[tex]\int {\frac{{{x^2} - 2x + 5}}{{x + 1}}} dx \,=\, \int {x - 3 + \frac{8}{{x + 1}}{\rm{ }}} dx{\rm{ \,=\, }}\frac{1}{2}{x^2} - 3x + 8\ln \left( {x + 1} \right) + C[/tex]
Hint: Polynomdivisjon
Og den andre oppgaven. Her er det delvis integrasjon som teller
[tex] \int {\frac{x}{2}\sin \left( {2x} \right)} dx = \frac{1}{2}\int {x\sin \left( {2x} \right)} dx [/tex]
[tex] \int {f\left( x \right)g\left( x \right) = f\left( x \right)g\left( x \right) - \int {f^{\prime}\left( x \right)g\left( x \right)} } [/tex]
[tex] f\left( x \right) = x{\rm{ }}f^{\prime}\left( x \right) = 1 [/tex]
[tex]g\left( x \right) = \sin \left( {2x} \right){\rm { g^{\prime}}}\left( x \right) = {2}\cos \left( {2x} \right) [/tex]
[tex] \int {\frac{x}{2}\sin \left( {2x} \right)} \, dx= \frac{1}{2}\left( {x\sin \left( {2x} \right) - \int {\sin \left( {2x} \right)} } \right)[/tex]
[tex] \int {\frac{x}{2}\sin \left( {2x} \right)} \, dx = \frac{1}{2}\left( {x\sin \left( {2x} \right) - \left( { - \frac{1}{2}\cos \left( {2x} \right) + C} \right)} \right) [/tex]
[tex]\int {\frac{x}{2}\sin \left( {2x} \right)} \, dx = \underline{\underline {{\rm{ }}\frac{1}{2}x\sin \left( {2x} \right) + \frac{1}{4}\cos \left( {2x} \right) + C{\rm{ }}}} [/tex]