
[tex] \int {{x^5}\sqrt {1 + {x^2}} {\rm{ dx}}} [/tex]
[tex] u = 1 + {x^2} [/tex]
[tex] du = 2x{\rm{ dx}}[/tex]
[tex] \int {{x^5}\sqrt {1 + {x^2}} {\rm{ dx}}}[/tex]
[tex] \int {{x^5}\sqrt u {\rm{ }}\frac{{du}}{{2x}}}[/tex]
[tex] \frac{1}{2}\int {{x^4}\sqrt u {\rm{ du}}}[/tex]
[tex] \frac{1}{2}\int {{{\left( {u - 1} \right)}^2}\sqrt u {\rm{ du}}} [/tex]
[tex] \int {kdv = kv - \int {vdk} } [/tex]
[tex] k = {\left( {u - 1} \right)^2}{\rm{ d}}k = 2\left( {u - 1} \right)[/tex]
[tex] dv = \sqrt u {\rm{ }}v = \frac{2}{3}{u^{3/2}}[/tex]
[tex] \int {{{\left( {u - 1} \right)}^2}\sqrt u {\rm{ }}dx = {\left( {{{\left( {u - 1} \right)}^2}} \right)}\frac{2}{3}{u^{3/2}} \, - \, \int {\frac{2}{3}{u^{3/2}}2\left( {u - 1} \right)} } {\rm{ }}du[/tex]
[tex] \int {{{\left( {u - 1} \right)}^2}\sqrt u {\rm{ }}du = {\left( {{{\left( {u - 1} \right)}^2}} \right)}\frac{2}{3}{u^{3/2}} \, - \, \int {\frac{4}{3}{u^{5/2}} \, - \, \frac{4}{3}{u^{3/2}}{\rm{ }}du} } [/tex]
[tex] \int {{{\left( {u - 1} \right)}^2}\sqrt u {\rm{ }}du = {{\left( {{{\left( {u - 1} \right)}^2}} \right)}\frac{2}{3}{u^{3/2}} \, - \, \left( {\frac{8}{{21}}{u^{7/2}} \, - \, \frac{8}{{15}}{u^{5/2}} + C} \right)} [/tex]
[tex] \int {{{\left( {u - 1} \right)}^2}\sqrt u {\rm{ }}du = {\left( {{{\left( {u - 1} \right)}^2}} \right)}\frac{2}{3}{u^{3/2}} \, - \, \frac{8}{{21}}{u^{7/2}} \, + \, \frac{8}{{15}}{u^{5/2}} + C} [/tex]
[tex] \int {{x^5}\sqrt {1 + {x^2}} {\rm{ dx}}} = \frac{1}{2}({\left( {\left( {1 + {x^2}} \right) \, - \, 1} \right)}^2} \cdot \frac{2}{3}{{\left( {1 + {x^2}} \right)}^{3/2}} \, - \, \frac{8}{{21}}{{\left( {1 + {x^2}} \right)}^{7/2}} \, + \, \frac{8}{{15}}{{\left( {1 + {x^2}} \right)}^{5/2}} + C )[/tex]
Er dette riktig ? Eventuelt kunne noen vise meg hvordan jeg kommer frem til fasiten under, er ikke så stø i algebra...
[tex] \int {{{\left( {u - 1} \right)}^2}\sqrt u {\rm{ }}dx} = \frac{1}{{105}}{\left( {1 + {x^2}} \right)^{\frac{3}{2}}}\left( {15{x^4} - 12{x^2} + 8} \right) + C [/tex]