[tex]f^\prime\left( x \right) = {{{{\left( {{x^2} - 5x + 4} \right)}^\prime } \cdot \left( {x + 2} \right) - \left( {{x^2} - 5x + 4} \right) \cdot {{\left( {x + 2} \right)}^\prime }} \over {{{\left( {x + 2} \right)}^2}}}[/tex]
[tex]$$f^\prime\left( x \right) = {{\left( {2x - 5} \right) \cdot \left( {x + 2} \right) - \left( {{x^2} - 5x + 4} \right) \cdot 1} \over {{{\left( {x + 2} \right)}^2}}}$$[/tex]
[tex]$$f^\prime\left( x \right) = {{\left( {2{x^2} - 10} \right) - \left( {{x^2} - 5x + 4} \right)} \over {{{\left( {x + 2} \right)}^2}}}$$[/tex]
[tex]$$f^\prime\left( x \right) = {{2{x^2} - 10 - {x^2} + 5x - 4} \over {{{\left( {x + 2} \right)}^2}}} = \underline {{{{x^2} + 5x - 14} \over {{{\left( {x + 2} \right)}^2}}}} $$[/tex]
Jeg får dette, men både kalkulatoren og læreboka får det under...
Fasit: [tex]$$f^\prime\left( x \right) = \underline{\underline {{{{x^2} + 4x - 14} \over {{{\left( {x + 2} \right)}^2}}}}} $$[/tex]
Men det er klart det kan faktisk skje at de begge tar feil
