Algebra - kjemi
Posted: 04/11-2011 14:05
[tex]$${{\left( {{x \over {5,00}}} \right)} \over {\left( {{{0,25\; - \;x} \over {5,00}}} \right)\; \cdot \;\left( {{{0,65\; - \;x} \over {5,00}}} \right)}}\; = \;15$$[/tex]
[tex]$$\left( {{x \over {5,00}}} \right) = 15 \cdot \left( {{{0,25\; - \;x} \over {5,00}}} \right)\; \cdot \;\left( {{{0,65\; - \;x} \over {5,00}}} \right)\;\;\left| { \cdot 5} \right.$$[/tex]
[tex]$$x = 75 \cdot \left( {0,25 - x} \right) \cdot \left( {0,65 - x} \right)$$[/tex]
[tex]$$x = 75 \cdot \left( {0,1625 - 0,25x - 0,65x + {x^2}} \right)$$[/tex]
[tex]$$x = 75 \cdot \left( {0,1625 - 0,90x + {x^2}} \right)$$[/tex]
[tex]$$x = 12,1875 - 67,5x + 75{x^2}$$[/tex]
[tex]$$75{x^2} - 68,5x + 12,1875 = 0\;\;\left| { \cdot {1 \over {25}}} \right.$$[/tex]
[tex]$$\underline {3\,{x^2}\; - \;2,74x\; + \;0,4875\; = \;0} $$[/tex]
Fasiten sier: [tex]$$3\,{x^2}\; - \;3,70\,x\; + \;0,4875\; = \;0$$[/tex]
Har sjekket igjennom 10 ganger, det er ingen feil her!? (altså kun i fasiten)
[tex]$$\left( {{x \over {5,00}}} \right) = 15 \cdot \left( {{{0,25\; - \;x} \over {5,00}}} \right)\; \cdot \;\left( {{{0,65\; - \;x} \over {5,00}}} \right)\;\;\left| { \cdot 5} \right.$$[/tex]
[tex]$$x = 75 \cdot \left( {0,25 - x} \right) \cdot \left( {0,65 - x} \right)$$[/tex]
[tex]$$x = 75 \cdot \left( {0,1625 - 0,25x - 0,65x + {x^2}} \right)$$[/tex]
[tex]$$x = 75 \cdot \left( {0,1625 - 0,90x + {x^2}} \right)$$[/tex]
[tex]$$x = 12,1875 - 67,5x + 75{x^2}$$[/tex]
[tex]$$75{x^2} - 68,5x + 12,1875 = 0\;\;\left| { \cdot {1 \over {25}}} \right.$$[/tex]
[tex]$$\underline {3\,{x^2}\; - \;2,74x\; + \;0,4875\; = \;0} $$[/tex]
Fasiten sier: [tex]$$3\,{x^2}\; - \;3,70\,x\; + \;0,4875\; = \;0$$[/tex]
Har sjekket igjennom 10 ganger, det er ingen feil her!? (altså kun i fasiten)