Matematikk 2p - potensregning

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
Christianinho
Fibonacci
Fibonacci
Posts: 3
Joined: 19/01-2012 21:01

3^12 - 3^10 / 3^11 + 3^10

Her har jeg valgt å trekke først fra 3^12 - 3^11 og får dermed 3^1. -3^10 har jeg trukket fra 3^10 og får 3^0 = 1.
Svaret jeg har kommet fram til er 3.

I følge fasiten er dette feil og svaret skal være 1. Hva har jeg gjort galt?

Takk for svar :)
fuglagutt
Fermat
Fermat
Posts: 779
Joined: 01/11-2010 12:30

Svaret skal nok bli 2.

Vi setter først [tex]3^{10}[/tex] utenfor både over og under brøkstreken og får:
[tex]\frac{3^{10}(3^2-3^0)}{3^{10}(3^1+3^0)}[/tex]

Da sitter vi igjen med [tex]\frac{8}{4} = 2[/tex]
Christianinho
Fibonacci
Fibonacci
Posts: 3
Joined: 19/01-2012 21:01

Jeg tror måten du skriver på går langt utenfor det som er kompetanseområdet i matematikk 2p. Jeg har aldri sett formuleringen du gir meg her, men jeg forstår allikevel hva du har gjort.

Er det en annen måte å sette opp stykket på som er litt mindre komplisert og innenfor læreplansmålene i 2p?

Potensreglene vi har lært er følgende:

a^p * a^q = a^p+q
a^p : a^q = a^p-q
(a*b)^p = a^p * b^p
(a/b)^p = a^p / b^p
(a^p)^q = a^p*q

Takker for hjelp :)
2357
Lagrange
Lagrange
Posts: 1180
Joined: 07/12-2007 22:08

Den første regelen din er dekkende. [tex]a^p \cdot a^q = a^{p+q}[/tex]

[tex]\frac{3^{12} - 3^{10}}{3^{11} + 3^{10}} = \frac{3^{10+2} - 3^{10 + 0}}{3^{10 + 1} + 3^{10 + 0}} = \frac{3^{10} \cdot 3^2 - 3^{10} \cdot 3^0}{3^{10} \cdot 3^{1} + 3^{10} \cdot 3^0} = \frac{3^{10} \left(3^2 - 3^0 \right)}{3^{10} \left(3^1 + 3^0 \right)}[/tex]
Post Reply