Differensligning generell løsning
Posted: 26/09-2012 10:52
Hei
[tex]$$\left( a \right)\;\;\;\;{y_n} - 5{y_{n - 1}} + 6{y_{n - 2}} = 0$$[/tex]
[tex]$$K.\;lign:\;\;{\lambda ^2} - 5\lambda + 6 = 0$$[/tex]
[tex]$$\lambda = {{ - \left( { - 5} \right) \pm \sqrt {{{\left( { - 5}\right)}^2} - 4 \cdot 1 \cdot 6} } \over {2 \cdot 1}} = {{5 \pm 1} \over 2} = \left\{ {\matrix{3 \cr 2 \cr } } \right.$$[/tex]
[tex]$$ \Rightarrow \underline{\underline {{y_n} = A \cdot {3^n} + B \cdot n \cdot {2^n}}} $$[/tex]
[tex]$$\left( b \right)\;\;\;\;{y_n} - 5{y_{n - 1}} + 6{y_{n - 2}} = 5 \cdot {4^n}$$[/tex]
... hva skjer med leddet: [tex]$$5 \cdot {4^n}$$[/tex]
FASIT: [tex]$${y_n} - 5{y_{n - 1}} + 6{y_{n - 2}} = 10 \cdot {4^{n + 1}}$$[/tex]
[tex]$$\left( a \right)\;\;\;\;{y_n} - 5{y_{n - 1}} + 6{y_{n - 2}} = 0$$[/tex]
[tex]$$K.\;lign:\;\;{\lambda ^2} - 5\lambda + 6 = 0$$[/tex]
[tex]$$\lambda = {{ - \left( { - 5} \right) \pm \sqrt {{{\left( { - 5}\right)}^2} - 4 \cdot 1 \cdot 6} } \over {2 \cdot 1}} = {{5 \pm 1} \over 2} = \left\{ {\matrix{3 \cr 2 \cr } } \right.$$[/tex]
[tex]$$ \Rightarrow \underline{\underline {{y_n} = A \cdot {3^n} + B \cdot n \cdot {2^n}}} $$[/tex]
[tex]$$\left( b \right)\;\;\;\;{y_n} - 5{y_{n - 1}} + 6{y_{n - 2}} = 5 \cdot {4^n}$$[/tex]
... hva skjer med leddet: [tex]$$5 \cdot {4^n}$$[/tex]
FASIT: [tex]$${y_n} - 5{y_{n - 1}} + 6{y_{n - 2}} = 10 \cdot {4^{n + 1}}$$[/tex]