Page 1 of 1
Log
Posted: 04/12-2012 13:09
by Haille
Hei
Hvordan løses dette:
log 3.2 = log x
???
Posted: 04/12-2012 13:21
by Haille
Blir det:
log 3,2 = 0.505
0.505 = log x
10 ^0.505 = 10^x
x = 3.2
??
Posted: 04/12-2012 13:34
by Lord X
Her er det jo ganske opplagt at x=3.2 må vere løysinga då.. Men kan løyse slik:
[tex]\log(3.2)=\log(x)[/tex]
Opphøyer i 10 på begge sider:
[tex]10^{\log(3.2)}=10^{\log(x)}[/tex]
som medfører at
[tex]3.2=x[/tex]
EDIT:
Og dette argumentet viser generelt at logaritmen har den eigenskapen som Fibonacci viser til.

Posted: 04/12-2012 13:35
by Fibonacci92
Logaritmer har den egenskapen at dersom
[tex]\log{(a)} = \log{(b)}[/tex]
så er
[tex]a = b[/tex]
Posted: 04/12-2012 13:37
by Haille
Ok, cheers.. Ikke helt trygg på dem der reglan....
Posted: 04/12-2012 14:03
by Vektormannen
log(a) gir oss hvilket tall vi må oppøye 10 i for å få a. Det kan ikke finnes to forskjellige slike tall. Hvis jeg vil ha 100 ved å opphøye 10 i noe så må jeg opphøye 10 i 2. Det finnes ikke noe annet tall jeg kan opphøye 10 i for å få 100. Opphøyer jeg 10 i noe som er større enn 2 så får jeg noe som er større enn 100, og opphøyer jeg i noe som er mindre enn 2 så får jeg noe som er mindre enn 100. Det finnes altså bare én logaritme for hvert tall; eller sagt på en annen måte kan vi si at hvis [tex]\log a = \log b[/tex] så må [tex]a = b[/tex].
Posted: 04/12-2012 19:06
by Haille
Jeg hører...