løse me y

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
Guest

Hei hvordan løser man denne step by step med hensyn på y(x)?
-0.5*ln (2x+y (x)+1)=-0.5*ln (x^2+1)
Vaktmester
World works; done by its invalids
World works; done by its invalids
Posts: 857
Joined: 26/04-2012 09:35

Tja.

$-0.5*\ln (2x+y (x)+1)=-0.5*\ln (x^2+1)$

$ {{-0.5*\ln (2x+y (x)+1)} \over {-0.5} }={{-0.5*\ln (x^2+1)} \over {-0.5} }$

$e^{\ln (2x+y (x)+1)}=e^{\ln (x^2+1)}$

... ser du hvordan det går videre?
ettam
Guru
Guru
Posts: 2480
Joined: 28/09-2005 17:30
Location: Trondheim

1) Divider med -0,5 på begge sider

2) Opphøy i e (eulertallet) på begge sider.

ser. du veien videre selv?

EDIT: Ser jeg var litt sent ute :wink:
Guest

Er e opphøyd i ln (hva som helst)=hva som helst? Hvis ja : hvorfor er det slik?
Vaktmester
World works; done by its invalids
World works; done by its invalids
Posts: 857
Joined: 26/04-2012 09:35

Du kan tenke på $\ln a$ som "Hvilket tall må jeg opphøye $e$ i for å få $a$?". Da får du "Det tallet man må opphøye $e$ i for å få $a$." Når du så tar $e$ opphøyd i "Det tallet man må opphøye $e$ i for å få $a$." så ser man at $e^{\ln a} = a$.
Post Reply