Page 1 of 1

first order nonlinear ODE

Posted: 05/05-2014 01:09
by Janhaa
hvordan i alle dager løses denne?

[tex]\large (x^2+xy)dy+(x^2+y^2)dx=0[/tex]

Re: first order nonlinear ODE

Posted: 05/05-2014 01:23
by Janhaa
Janhaa wrote:hvordan i alle dager løses denne?
[tex]\large (x^2+xy)dy+(x^2+y^2)dx=0[/tex]
forresten med substitusjonen

[tex]z=y/x[/tex]

så fås:

[tex](1+z)y'\,+\,(1+z^2)=0[/tex]

der

[tex]y'=z\,+\,xz'[/tex]

men så...?

Re: first order nonlinear ODE

Posted: 05/05-2014 03:11
by Gustav
Janhaa wrote:
[tex](1+z)y'\,+\,(1+z^2)=0[/tex]

der

[tex]y'=z\,+\,xz'[/tex]

men så...?

[tex](1+z)(z\,+\,xz')+\,(1+z^2)=0[/tex] er det samme som

[tex]\frac{1+z}{1+z+2z^2}dz=-\frac{1}{x}dx[/tex].

Altså en separabel ligning.