hvordan skal jeg løse dette?
1/ 8/y + 1/y=0,75
^ er altså 1 over 8/y
brudden brøk?
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
-
- Lagrange
- Posts: 1264
- Joined: 04/10-2015 22:21
Løse for y?æøå wrote:hvordan skal jeg løse dette?
1/ 8/y + 1/y=0,75
^ er altså 1 over 8/y
$\frac{\frac{1}{8}}{y} + \frac{1}{y} = 0.75 \Leftrightarrow \frac{9}{8y}=0.75 \Leftrightarrow y=1.5$
Edit: Ser dette er feil oppgave. Gjest har løst den riktige under

Last edited by Dolandyret on 02/02-2016 18:36, edited 3 times in total.
"I want to die peacefully in my sleep like my grandfather, not screaming in terror like his passengers."
Her tror jeg det gikk litt fort i svingene.Dolandyret wrote:Løse for y?æøå wrote:hvordan skal jeg løse dette?
1/ 8/y + 1/y=0,75
^ er altså 1 over 8/y
[tex]\frac{\frac18}{y}+\frac 1y=0.75 \Leftrightarrow \frac18:\frac y1=0.75 \Leftrightarrow \frac18*\frac 1y=0.75 \Leftrightarrow \frac{1}{8y}=0.75 \Leftrightarrow 8y=\frac{1}{0.75} \Leftrightarrow 8y=\frac 43 \Leftrightarrow y=\frac{1}{6}[/tex]
$\frac{\frac{1}{8}}{y} + \frac{1}{y} = 0.75 \Leftrightarrow \frac{1}{8y} + \frac{1}{y} = \frac{3}{4}y \Leftrightarrow \frac{1}{y}(\frac{1}{8} + \frac{1}{1})=\frac{3}{4} \Leftrightarrow \frac{1}{y} = \frac{\frac{3}{4}}{\frac{9}{8}} \Leftrightarrow y=\frac{\frac{9}{8}}{\frac{3}{4}} = \frac{3}{2}$
Dessuten tror jeg det han spurte om var
$\frac{1}{\frac{8}{y}} + \frac{1}{y}=0.75 \Leftrightarrow \frac{y \cdot y}{8} + \frac{1 \cdot\cancel{y}}{\cancel{y}} = \frac{3}{4} \cdot y \Leftrightarrow \frac{y^2}{8} + \frac{1}{1} = \frac{3}{4}y \Leftrightarrow \frac{1}{8}y^2 - \frac{3}{4}y + 1 = 0 \Rightarrow y_1=2 \vee y_2=4$
-
- Lagrange
- Posts: 1264
- Joined: 04/10-2015 22:21
Ser slik ut gitt. Leste visst feil på oppgaven ogsåGjest wrote:Her tror jeg det gikk litt fort i svingene.Dolandyret wrote:Løse for y?æøå wrote:hvordan skal jeg løse dette?
1/ 8/y + 1/y=0,75
^ er altså 1 over 8/y
[tex]\frac{\frac18}{y}+\frac 1y=0.75 \Leftrightarrow \frac18:\frac y1=0.75 \Leftrightarrow \frac18*\frac 1y=0.75 \Leftrightarrow \frac{1}{8y}=0.75 \Leftrightarrow 8y=\frac{1}{0.75} \Leftrightarrow 8y=\frac 43 \Leftrightarrow y=\frac{1}{6}[/tex]
$\frac{\frac{1}{8}}{y} + \frac{1}{y} = 0.75 \Leftrightarrow \frac{1}{8y} + \frac{1}{y} = \frac{3}{4}y \Leftrightarrow \frac{1}{y}(\frac{1}{8} + \frac{1}{1})=\frac{3}{4} \Leftrightarrow \frac{1}{y} = \frac{\frac{3}{4}}{\frac{9}{8}} \Leftrightarrow y=\frac{\frac{9}{8}}{\frac{3}{4}} = \frac{3}{2}$
Dessuten tror jeg det han spurte om var
$\frac{1}{\frac{8}{y}} + \frac{1}{y}=0.75 \Leftrightarrow \frac{y \cdot y}{8} + \frac{1 \cdot\cancel{y}}{\cancel{y}} = \frac{3}{4} \cdot y \Leftrightarrow \frac{y^2}{8} + \frac{1}{1} = \frac{3}{4}y \Leftrightarrow \frac{1}{8}y^2 - \frac{3}{4}y + 1 = 0 \Rightarrow y_1=2 \vee y_2=4$

"I want to die peacefully in my sleep like my grandfather, not screaming in terror like his passengers."