omforming av trignometrisk funksjon R2

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
kraf

Hei, har følgende oppgave:



Omform: [tex]3sin2x-4cos2x[/tex] til en sinusfunksjon.


Dette har jeg gjort:

[tex]A=\sqrt{3^2+(-4)^2}=5[/tex]

[tex]tan \phi \frac{-4}{3}\Rightarrow \phi=-0.927[/tex]

Så vet jeg at vinkelen må ligge i samme kvadrant som punktet [tex](a,b)=(3,-4)[/tex]. dette punktet ligger jo i fjerde kvadrant så dermed trodde jeg at vinkelen skulle være :

[tex]\phi=2\pi -0.927=5.356[/tex]

så dermed får jeg at [tex]5sin(2x+5.356)[/tex] (noe som stemmer )

men fasiten skriver også [tex]5sin(2x-0.927)[/tex]

denne løsningen kommer jo av at jeg bruker vinkelen jeg får, men jeg trodde at man måtte forandre vinkelen?

har det noe med at siden vi har at [tex]tan^{-1}\frac{-4}{3}=-0.927=-53.1[/tex], og denne vinkelen ligger i fjerde kvadrant så trenger vi ikke endre noe?

Men hvorfor fikk jeg den første løsningen?

en funksjon som f.eks. [tex]-2sin2x+cos2x[/tex] vil jo ha en [tex]tan^{-1}\frac{1}{-2}=-26.5=-0.463[/tex]
ha en vinkel i fjerde kvadrant, mens punktet [tex](a,b)=(-2, 1)[/tex] ligger i 2.kvadrant, og da skjønner jeg at den egentlige vinkelen blir [tex]\phi=-0.463+\pi=2.678[/tex]

Spørsmålet er hva som blir forskjellen? hvorfor måtte jeg endre vinkelen i den første oppgaven, selv om det var samme kvadrant



takk for hjelp!
R2-elev

Løsningene har akkurat samme betydning. Vinkelen du får kan skrives som -53.1 eller 316.9. Det vet vi fra at sinusfunksjonen er periodisk og gir et svar hver 2*pi.

−0.927 + 2*pi = 5.356
Guest

R2-elev wrote:Løsningene har akkurat samme betydning. Vinkelen du får kan skrives som -53.1 eller 316.9. Det vet vi fra at sinusfunksjonen er periodisk og gir et svar hver 2*pi.

−0.927 + 2*pi = 5.356

det visste jeg, men hva med spørsmålet mitt?
Guest

Igjen kommet problemet


[tex]sinx-cosx[/tex]

[tex]A=\sqrt{a^2+b^2}[/tex] hvor [tex](a,b)=(1,-1)[/tex]

[tex]A=\sqrt{1^2+(-1)^2}=\sqrt{2}[/tex]


[tex]tan\Phi =\frac{b}{a}=\frac{-1}{1}\Rightarrow \Phi =-\frac{\pi}{4}[/tex]

Ettersom [tex]\Phi=-\frac{\pi}{4}[/tex] ligger i 4 kvadrant, og det samme gjør punktet [tex](a,b)[/tex] så trodde jeg at uttrykket kunne forenkles til [tex]sinx-cosx=\sqrt{2}sin(x-\frac{\pi}{4})[/tex]

Men dette stemmer ikke av en eller annen grunn....
fasiten sier [tex]sinx-cosx=\sqrt{2}sin(x+\frac{3\pi}{4})[/tex]

de mener at vinkelen skal være [tex]\Phi=-\frac{\phi}{4}+\pi=\frac{3\pi}{4}[/tex]

men denne vinkelen ligger jo i 2.kvadrant og det gjør ikke punktet...


hva er det jeg ikke forstår her?
halalalalala
Fibonacci
Fibonacci
Posts: 4
Joined: 01/05-2017 18:22

Gjest wrote:ingen?
Hei!

tangens til -1 er 3pi/4 og ikke pi/4. Se tabellen under.
Attachments
18493967_832036356951732_965698988_o.jpg
18493967_832036356951732_965698988_o.jpg (203.16 KiB) Viewed 5368 times
Guest

jo....

[tex]tanx=-1\Rightarrow x=-45=\frac{45*\pi}{180}=-\frac{\pi}{4}[/tex]


kan noen vær så snill svare på spørsmålet mitt? føler at jeg sitter veldig fast med forståelsen av problemet jeg presententerer ovenfor
Aftermath
Cayley
Cayley
Posts: 77
Joined: 23/05-2016 23:12
Location: Trondheim

Om du lurer på hva som er forskjellen mellom
[tex]5\sin(2x+5,356)[/tex] og [tex]5\sin(2x-0,927)[/tex]
så er vel svaret ingenting, med mindre du står ovenfor et praktisk problem hvor du er ute etter en nummeret del av sinuskurven.
Og du har ikke egentlig endret vinkelen, det er den samme.
Guest

Aftermath wrote:Om du lurer på hva som er forskjellen mellom
[tex]5\sin(2x+5,356)[/tex] og [tex]5\sin(2x-0,927)[/tex]
så er vel svaret ingenting, med mindre du står ovenfor et praktisk problem hvor du er ute etter en nummeret del av sinuskurven.
Og du har ikke egentlig endret vinkelen, det er den samme.

hei, jeg vet at forskjellen er ingenting, men spørsmålet mitt er hva er nødvendigheten? hvis du ser på mitt første innlegg.

problemet med at [tex](a, b)[/tex] skal være i samme kvadrant som [tex]tan \phi =\frac{b}{a}[/tex]
hvorfor endre vinkelen når de ligger i samme kvadrant?
Guest

Ingen som kan hjelpe meg?
Fysikkmann97
Lagrange
Lagrange
Posts: 1258
Joined: 23/04-2015 23:19

tan er $\pi$-periodisk. Altså er $tan(x + \pi) = tan(x)$. Av det jeg har lært oppgir man vinkler vanligvis i første omløp ($[0, 2\pi]$). Som du sikkert ser ligger ikke [tex]\Phi = -\frac \pi 4[/tex] i det intervallet.
Aftermath
Cayley
Cayley
Posts: 77
Joined: 23/05-2016 23:12
Location: Trondheim

Nødvendigheten? Hvis det ikke er noe forskjell er det da heller ikke nødvendig. Begge svar er like gode.
Post Reply