Page 1 of 1

Kombinatorikk

Posted: 17/10-2019 17:21
by SjurHal
Har en oppgave her som jeg ikke får til:

Av bokstavkombinasjonen S,I,N,U,S skal vi lage andre kombinasjoner ved å bytte om på rekkefølgen av bokstavene. Hvor mange ulike måter kan det gjøres på?

Re: Kombinatorikk

Posted: 17/10-2019 17:40
by Mattebruker
Sett at vi plasserer dei fem bokstavane i kvar sitt " bur ". Da fins det [tex]\binom{5}{2}[/tex] ulike plasseringar for
dei to S-ane. For kvar slik plassering kan dei øvrige tre bokstavane plasserast i 3! ulike rekkefølger.
Tal ordkombinasjonar totalt = [tex]\binom{5}{2}[/tex] [tex]\cdot[/tex] 3! = 10 [tex]\cdot[/tex] 6 = 60

Re: Kombinatorikk

Posted: 17/10-2019 17:43
by SjurHal
Mattegjest wrote:Sett at vi plasserer dei fem bokstavane i kvar sitt " bur ". Da fins det [tex]\binom{5}{2}[/tex] ulike plasseringar for
dei to S-ane. For kvar slik plassering kan dei øvrige tre bokstavane plasserast i 3! ulike rekkefølger.
Tal ordkombinasjonar totalt = [tex]\binom{5}{2}[/tex] [tex]\cdot[/tex] 3! = 10 [tex]\cdot[/tex] 6 = 60
Tusen takk, forstod det nå! :D