Lett ulikhet (vgs)

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Lett ulikhet (vgs)

Innlegg Janhaa » 29/06-2020 10:36

Gitt
[tex]a \geq 0\,, b\geq 0\,, c \geq 0[/tex]

Bevis ulikheten:

[tex]\frac{2a}{b+c}\,+\,\frac{2b}{a+c}\,+\,\frac{2c}{a+b} \geq 3[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 8099
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Lett ulikhet (vgs)

Innlegg Mattegjest » 05/07-2020 07:26

Dette er Nesbitt's inequality.

Wikipedia presenterer i alt 9 ulike løysingar på dette problemet.
Meiner at Jensen gir den enklaste og mest elegante løysinga , men denne ligg vel utanfor vgs-pensum.
Elles meiner eg å hugse at den same ulikskapen har vore presentert i ulikhetmaraton på herverande forum.
Mattegjest offline

Re: Lett ulikhet (vgs)

Innlegg Mattegjest » 05/07-2020 09:13

Ulikheit på vgs-nivå :

La a , b , c , d [tex]\in[/tex] R[tex]_{+}[/tex]

Vis at [tex]\frac{a}{b}[/tex] + [tex]\frac{c}{d}[/tex] + [tex]\frac{b}{a}[/tex] + [tex]\frac{d}{c}[/tex] [tex]\geq[/tex] 4
Mattegjest offline

Re: Lett ulikhet (vgs)

Innlegg josi » 05/07-2020 10:29

Mattegjest skrev:Ulikheit på vgs-nivå :

La a , b , c , d [tex]\in[/tex] R[tex]_{+}[/tex]

Vis at [tex]\frac{a}{b}[/tex] + [tex]\frac{c}{d}[/tex] + [tex]\frac{b}{a}[/tex] + [tex]\frac{d}{c}[/tex] [tex]\geq[/tex] 4


Ved å sette på fellesnevner, faktorisere ut to ganger og forkorte blir
$\frac{a}{b} + \frac{c}{d}+ \frac{b}{a} + \frac{d}{c} =\\
\frac{a^2 + b^2}{ab} + \frac{c^2 + d^2}{cd}\\
a = kb => \frac{k^2b^2 + b^2}{kb^2} = k + \frac1k$
som har minimunsverdi 2 for k = 1. Analogt gjelder for $\\
\frac{c^2 + d^2}{cd}$ slik at $\frac{a^2 + b^2}{ab} + \frac{c^2 + d^2}{cd} \geq 4$
josi offline

Re: Lett ulikhet (vgs)

Innlegg Gustav » 05/07-2020 14:45

Mattegjest skrev:Ulikheit på vgs-nivå :

La a , b , c , d [tex]\in[/tex] R[tex]_{+}[/tex]

Vis at [tex]\frac{a}{b}[/tex] + [tex]\frac{c}{d}[/tex] + [tex]\frac{b}{a}[/tex] + [tex]\frac{d}{c}[/tex] [tex]\geq[/tex] 4


Det enkleste her er nok AM-GM som gir $\frac{a}{b}+\frac{c}{d}+\frac{b}{a}+\frac{d}{c}\ge 4\sqrt[4]{\frac{abcd}{abcd}}=4$.
Gustav offline
Tyrann
Tyrann
Innlegg: 4416
Registrert: 12/12-2008 12:44

Re: Lett ulikhet (vgs)

Innlegg Mattegjest » 05/07-2020 15:35

Føler at eg må gi " full utteljing " til begge . Josi løyser ulikskapen heilt korrekt med det verktøyet som er tilgjengeleg på vgs-nivå.
Gustav presenterer ei meir " elegant " løysing ( AM-GM ) , men denne er ikkje med i vgs -pensum.
Mattegjest offline

Re: Lett ulikhet (vgs)

Innlegg Mattegjest » 07/07-2020 06:03

Ulikheit på vgs-nivå:

La a , b [tex]\in[/tex] R[tex]_{+}[/tex]

Vis at a[tex]^{3}[/tex] + b[tex]^{3}[/tex] [tex]\geq[/tex] a[tex]^{2}[/tex]b + ab[tex]^{2}[/tex]
Mattegjest offline

Re: Lett ulikhet (vgs)

Innlegg Janhaa » 07/07-2020 10:30

Mattegjest skrev: Ulikheit på vgs-nivå:

La a , b [tex]\in[/tex] R[tex]_{+}[/tex]

Vis at a[tex]^{3}[/tex] + b[tex]^{3}[/tex] [tex]\geq[/tex] a[tex]^{2}[/tex]b + ab[tex]^{2}[/tex]

Tipper AM - GM i farta.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 8099
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Lett ulikhet (vgs)

Innlegg Mattegjest » 07/07-2020 10:56

Trur ikkje at AM-GM er eit tenleg verktøy her . Dessutan: AM-GM fell utanfor vgs - pensum.
Mattegjest offline

Re: Lett ulikhet (vgs)

Innlegg Gjest » 07/07-2020 11:15

er jeg på rett spor hvis jeg setter[tex](a-b)(a^2-b^2)\geq 0[/tex] ?
Gjest offline

Re: Lett ulikhet (vgs)

Innlegg Mattegjest » 07/07-2020 11:46

Perfekt ! !
Mattegjest offline

Re: Lett ulikhet (vgs)

Innlegg Mattegjest » 07/07-2020 11:52

Gjest er på rett spor , men ikkje heilt i mål !
Mattegjest offline

Re: Lett ulikhet (vgs)

Innlegg josi » 07/07-2020 12:28

Gjest skrev:er jeg på rett spor hvis jeg setter[tex](a-b)(a^2-b^2)\geq 0[/tex] ?

$(a-b)(a^2-b^2) = {(a - b)}^2(a + b)\geq 0$
josi offline

Re: Lett ulikhet (vgs)

Innlegg Mattegjest » 07/07-2020 14:07

The proof is completed !
Mattegjest offline

Re: Lett ulikhet (vgs)

Innlegg Gjest » 07/07-2020 14:52

ny ulikhet på vgs nivå
vis at x^8-x^5+x^2-x+1 er større enn 0 for alle x som er element i R
Gjest offline

Neste

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 4 gjester