Page 1 of 1

Ulikhet

Posted: 20/04-2006 18:24
by Guest
Hvordan løser vi følgende ulikhet ved regning?

-2x^2 < x - 1

Takker for alle svar

Posted: 20/04-2006 20:15
by Knut Erik
Du må begynne med å få ulikheten større eller mindre enn 0
Med andre ord, flytt alt over på en side.

Når dette er gjort, faktoriserer du det så mye du kan og setter det på fortegnssjema

[tex]{\begin{eqnarray} - 2x^2 &<& x - 1 \cr - 2x^2 - x + 1 &<& 0 \cr 2(x - ( - 1))(x - {1 \over 2}) &<& 0 \cr 2(x + 1)(x - {1 \over 2}) &<& 0 \cr\end{eqnarray}} [/tex]

Posted: 20/04-2006 20:17
by Andrina
Skriv alt på venstre side

-2x^2-x+1<0

Venstresiden beskriver altså en parabel som er "åpnet nede".

Finner nullpunktene til denne parabelen:

-2x^2-x+1=0

x^2+1/2x-1/2=0

x=-1/4+kv.rot(1/16+1/2) og x=-1/4-kv.rot(1/16+1/2)

dvs. nullpunktene er x=1/2 og x=-1

-2x^2-x+1<0 for x<-1 og for x>1/2 (best at du gjør en tegning av parabelen, så ser du det bedre)