MAT 1015


DEL EN

Oppgave 1

a)

1) 533 milliarder = 533 000 000 000 = $5,33 \cdot 10^{11}$

2) $0,000533 = 5,33 \cdot 10^{-4}$

b)

1) $8 \cdot 2^{-2} = 8 \cdot \frac{1}{2^2} = \frac{8 \cdot 1}{4} = 2$

2) $2^3 \cdot (\frac{3}{2})^2 = 8 \cdot \frac{ 9} {4 } = \frac {8 \cdot 9 }{4 } = 2 \cdot 9 = 18$

c)

2, 1, 3, 4, 5, 5, 3, 6, 4, 3

Vi ordner i stigende rekkefølge:

1, 2, 3, 3, 3, 4, 4, 5, 5, 6

Median er de to tallene i midten, delt på to. 3 + 4 = 7. Så deler man på to: 7:2 = 3,5

Variasjonsbredden er 6 - 1 = 5, forteller oss bare at hele skalaen er i bruk.

Gjennomsnitt: $\frac{1+2+3+3+3+4+4+5+5+6}{10} = 3,6$

d)

40 000km = 40 000 000m

20cm/ ball = 0,2m/ ball

$\frac{4\cdot 10^7}{2 \cdot 10^{-1} } fotballer = 2 \cdot 10^8$ fotballer.

e)

1)

$11_{2} = 2^1 + 2^0 = 3_{10} \\ 110_2 = 2^2+2^1 = 6_{10} \\ 1100_2 = 2^3 + 2^2 = 12_{10}$

2)

Alle verdigivene siffer øker med faktoren to, se oppgaven over, derfor blir tallet dobblet når man legger til en null bakerst.

3)

Følger vi systemet over er 24 = 11000 og 48 = 110000.

f)

De svømmer I et 25 meters basseng. Kine er presis i starten og vender først, etter ca 18 sekunder. Mina vender etter ca 25 sekunder og har de siste 10 meterne tapt mye i forhold til Kine. Kine svømmer bra til det er ca 17 meter igjen, da sprekker hun og blir forbisvømt av Mina etter 30 sekunder, 15 meter før mål. Mina kommer i mål etter ca. 46 sekunder og Kine etter ca. 56.

g)

Fart (km/t) Antall biler klassemidtpunkt klassemidtpunkt $\cdot$

frekvens

[20,30> 20 25 500
[30,40> 20 35 700
[40,50> 10 45 450
1650

Gjennomsnitt: 1650:50 = 33 kilometer i timen.

h)

Han har hatt en måned med 5 prosent vekst, to måneder med 0,8 prosent vekst og tre måneder med 15 prosent nedgang.

Oppgave 2

April Mai Juni
Per 225 90 450
Pål 675 180 450
Espen 0 630 900

a)

2a1-2p-h2011.png

2a2-2p-h2011.png

b)


2b-2p-h2011.png

DEL TO

Oppgave 3

a)


Boken skulle vært levert for hundre år siden, altså er man 5200 uker for sent ute.

Modeller:

Gebyr1 (x) = $ 0,10 + (x-1)\cdot 0,05 $

Gebyr2 (x) = $ 0,10 \cdot 1,002^{x-1} $

Dersom modell 1 betales det: Gebyr1 (5200) = $ 0,10 + (5200-1)\cdot 0,05 = 260kr $

Dersom modell 2 betales det: Gebyr2 (5200) = $ 0,10 \cdot 1,002^{5200-1} = 3246 kr $

b)

3b-2p-h2011.png

Man observerer at den lineære modellen, modell en først kommer opp i ti kroner, etter ca. 198 uker. Den eksponentielle modellen når ti kroner etter ca. 2305 uker. Modellene gir like store kostnader etter ca. 3776 uker.

Oppgave 4

a)

1)


Årstall 2005 2006 2007 2008 2009 2010
Innbyggertall 650 550 467 396 336 284
Endring fra året før -100 -83 -71 -60 -52
Prosentvis endring fra året før -15,4% -15,1% -15,2% -15,2% -15,5%

2)

Dersom antallet personer hadde avtatt med samme antall hvert år ville en lineær modell være fornuftig. Her ser man at den prosentvise nedgangen er tilnærmet konstant fra år til år, derfor er en eksponentiell modell det beste her, ut fra foreliggende datamengder (man har jo ingen garanti for at denne utviklingen vil fortsette).

b)

4b-2p-h2011.png

Man observerer at tilpasningen er god og at modellen er $ f(x) = 649,7 \cdot 0,848^x$

c)

4c-2p-h20111.png

1) ca. 55 personer, fra figur.

2) ca,11,33 år, fra figur. Dvs. i første halvdel av 2016.

d)

4d-2p-h2011.png

Modellen (blå graf) er ikke brukbar i det hele tatt. Fra ca. 2015 gir den et negativt innbyggertall. Før 2012 overestimerer den antall innbyggere.

Oppgave 5

a)

5a1-2p-h2011.png = $ 2 \cdot 20^2 + 3 \cdot 20^1 + 17\cdot 20^0 = 800 + 60 + 17 = 877$


b)

$ 76 = 60 +16 = 3 \cdot 20^1 + 16 \cdot 20^0 = $ 5b-2p-h2011.png

Oppgave 6

5a-2p-h2011.png

a)

Fra figuren over: $ 0,001443 \cdot x^{1,067} = 1,44 \cdot 10{-3} \cdot x^{1,07}$

b)

Se figuren over.

c)

Det tar ca 59,5 minutter, i følge figuren over.

d)

$ \frac{T_2}{T_1}= \frac{D_2}{D_1}^{1,06} \\ \frac{T_2}{71,617 min}= (\frac{20097,5m}{25000m})^{1,06} \\ T_2 = 71,617 min \cdot 0,8353499 \\ T_2 = 59,8min$


Dette stemmer godt med modellen i a, avviket er mindre enn 20 sekunder.

Oppgave 7

a)

Bruker sannsynlighetskalkulatoren på matematikk.net og får:

Gjennomsnitt

7a1-2p-h2011.png

Standard avvik

7a2-2p-h2011.png

Median

7a3-2p-h2011.png


b)

Ved en dobling av alle verdiene finner man:

Gjennomsnitt

7b1-2p-h2011.png

Standard avvik

7b2-2p-h2011.png

Median

7b3-2p-h2011.png

c)

Dersom antall tall i mengden er konstant og hver enkelt tallverdi dobles, vil median, gjennomsnitt og standardavvik også dobles. Dersom du synes dette er vanskelig å forstå kan du leke med små tallmengder. Prøv

1,2,3

2,4,6

100, 200, 300.