Diskusjon av denne oppgaven

Løsning laget av jonasgilje

Løsningsforslag laget av NDLA


Innhold

DEL EN

Oppgave 1

a)

$f(x)= 5cos (2x) \\f´(x)= - 2 \cdot 5 sin(2x)= -10sin(2x)$

b)

$g(x) = x sin x \\ g´(x)= sinx + x cos x$

c)

$h(x)= 5e^{-x}sin(2x) \\ h´(x)= -5e^{-x}sin(2x) + 10e^{-x}cos(2x) = 5e^{-x}(2cos (2x)- sin(2x))$

Oppgave 2

a)

$\int\limits_0^2(x^2-2x+1)dx= [\frac 13x^3 - x^2+x]_0^2 = \frac 83 -4+2= \frac 23$

b)

$\int \frac{e^x}{(e^x+1)^2} dx$

Setter $u = e^x+1$ da blir $du=e^xdx$

Vi får da:

$\int \frac{1}{u^2} du = \int u^{-2} du = - u^{-1}+ c = -\frac{1}{e^x+1} + c$

Oppgave 3

$f(x) = 2e^{- \frac 12 x} \quad \quad x \in <0, ln3]$


$V = \pi \int\limits_0^{ln3}(2e^{- \frac 12x})^2 dx = 4 \pi [-e^{-x}]_0^{ln3} = -4 \pi(\frac {1}{e^{ln3}} - 1)=^{}ln3) =-4 \pi(\frac13 -1) = \frac{8 \pi}{3} $

Oppgave 4

a)

F´ (4) = f (4) = 1

b)

F(4) - F(1) = 6 - (-1) = 7


Oppgave 5

Oppgave 6

Oppgave 7

Oppgave 8

$y^2 \cdot y' = x, \quad \quad y(0)=2 \\ y^2 dy =x dx \\ \int y^2 dy = \int xdx \\ \frac 13y^3 = \frac 12 x^2 + C \\ y= \sqrt [3]{\frac 32x^2 + c}$

y( 0) = 2 gir C = 8

$y= \sqrt [3]{\frac 32x^2 + 8}$

DEL TO