S2 2013 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 57: Linje 57:


<math>\displaystyle S = a_1 \cdot \frac{1}{1-k} = 11 \cdot \frac{1}{1.1} = 10.</math>
<math>\displaystyle S = a_1 \cdot \frac{1}{1-k} = 11 \cdot \frac{1}{1.1} = 10.</math>
==Oppgave 4==
Her kan vi velge mellom innsettingsmetoden eller addisjonsmetoden. Viser innsettingsmetoden her, da det virker som den er mest utbredt.
Fra den første ligningen har vi at
<math>x = 13 + z - y.</math>
Setter vi dette inn i de to neste ligningene får vi
'''(1)''' <math>2(13 + z - y) + y + z = 27 \ \Leftrightarrow \ 26 + 3z - y = 27 \ \Leftrightarrow \ 3z - y = 1.</math>
og
'''(2)''' <math>(13 + z - y) - 3y - 2z = -9 \ \Leftrightarrow \ 13 - z - 4y = -9 \ \Leftrightarrow \ 4y + z = 22.</math>
Disse to ligningene har da kun to ukjente, <math>x</math> og <math>y</math>, og da kan vi gjenta prosessen for å finne dem. I fra '''(1)''' får vi at <math>y = 3z - 1</math>. Setter vi det inn i '''(2)''' får vi
<math>4(3z - 1) + z = 22 \ \Leftrightarrow \ 13z = 26 \ \Leftrightarrow \ z = 2.</math>
Da er <math>y = 3z - 1 = 3 \cdot 2 - 1 = 5</math> og <math>x = 13 + z - y = 13 + 2 - 5 = 10</math>. Løsningene er altså <math>x = 10, \ y = 5, \ z = 2</math>.
==Oppgave 5==
===a)===
<math>f^\prime(x) = 3x^2 - 12x + 9</math>
Vi faktoriserer <math>f`\prime(x)</math> (ved å f.eks. benytte andregradsformelen til å finne nullpunkter) og får:
<math>f^\prime(x) = 3(x-1)(x-3).</math>
Da er <math>f^\prime(x) = 0</math> når <math>x = 1</math> eller <math>x = 3</math>. Tegner vi et fortegnsskjema ser vi at begge faktorer er negative frem til <math>x = 1</math>, så den deriverte er positiv og funksjonen dermed stigende for <math>x < 1</math>. Mellom <math>x = 1</math> og <math>x = 3</math> er fortegnene motsatte, slik at den deriverte blir negativ, og funksjonen altså avtagende. Situasjonen snur igjen for <math>x > 3</math>. Til sammen forteller dette oss at <math>x = 1</math> er et topp-punkt og <math>x = 3</math> er et bunnpunkt.
===b)===
<math>f^{\prime \prime}(x) = 6x - 12 = 6(x-2).</math>
<math>f^{\prime \prime}(x)</math> er lik <math>0</math> og skifter fortegn i <math>x = 2</math>. Dermed må <math>x = 2</math> være et vendepunkt.
===c) ===
Ingen skisse for øyeblikket.


==DEL TO==
==DEL TO==

Sideversjonen fra 22. mai 2013 kl. 09:33

Oppgaven som pdf

DEL EN

Oppgave 1

a)

Benytter produktregelen:

<math>f^\prime(x) = x^\prime \cdot e^{2x} + x \cdot (e^{2x})^\prime = 1 \cdot e^{2x} + x \cdot 2e^{2x} = e^{2x}(1 + 2x).</math>

b)

Her bruker vi brøkregelen:

<math>\begin{eqnarray*} g^\prime(x) &=& \frac{(x-1)^\prime (x^2 - 3) - (x-1)(x^2-3)^\prime}{(x^2-3)^2} = \frac{1 \cdot (x^2 - 3) - (x-1) \cdot 2x}{(x^2 - 3)^2}\\ &=& \frac{x^2 - 3 - 2x^2 + 2x}{(x^2-3)^2} = \frac{-x^2 + 2x - 3}{(x^2 - 3)^2} = -\frac{x^2 - 2x + 3}{(x^2 - 3)^2} \end{eqnarray*}.</math>

Oppgave 2

I denne oppgaven får vi bruk for at divisjonen <math>p(x) : (x-a)</math> går opp dersom <math>p(a) = 0</math>.

a)

Hvis divisjonen skal gå opp så må vi få 0 når vi setter 3 inn i polynomet, det vil si at

<math>3^2 - 2 \cdot 3 + a = 0 \ \Leftrightarrow \ 3 + a = 0 \ \Leftrightarrow \ a = -3.</math>

b)

Her må <math>x-b</math> være en faktor i polynomet. Faktoriserer vi <math>x^2 - 3x - 4</math>, f.eks. med ABC-formelen, får vi at

<math>x^2 - 3x - 4 = (x+1)(x-4).</math>

Da må <math>x-b = x+1</math> eller <math>x-b = x-4</math>, som gir at <math>b = -1</math> eller <math>b = 4</math>. En annen måte å løse oppgaven på er å, igjen, si at når vi setter inn <math>b</math> i polynomet <math>x^2 - 3x - 4</math>, så får vi 0. Da får vi:

<math>b^2 - 3b - 4 = 0,</math>

og løser vi denne får vi de samme verdiene for <math>b</math>.

Oppgave 3

Denne rekken har formen

<math>a_1 + a_2 + ... = 11 \cdot (-0.1)^0 + 11 \cdot (-0.1)^2 + 11 \cdot (-0.1)^3 + ...</math>

Kvotienten til rekken er <math>k = -0.1</math>. Siden kvotienten er mellom -1 og 1 (har absoluttverdi mindre enn 1), så konvergerer rekka. Summen av de <math>n</math> første leddene er, ved å bruke sumformelen, gitt ved

<math>\displaystyle S_n = a_1 \cdot \frac{k^n - 1}{k-1} = 11 \cdot \frac{(-0.1)^n - 1}{-1.1} = 11 \cdot \frac{1 - (-0.1)^n}{1.1} = 10 \cdot (1 - (-0.1)^n).</math> (I det siste leddet ble 11 delt på 1.1, som blir 10.)

Lar vi antall ledd gå mot uendelig er summen gitt ved

<math>\displaystyle S = a_1 \cdot \frac{1}{1-k} = 11 \cdot \frac{1}{1.1} = 10.</math>

Oppgave 4

Her kan vi velge mellom innsettingsmetoden eller addisjonsmetoden. Viser innsettingsmetoden her, da det virker som den er mest utbredt.

Fra den første ligningen har vi at

<math>x = 13 + z - y.</math>

Setter vi dette inn i de to neste ligningene får vi

(1) <math>2(13 + z - y) + y + z = 27 \ \Leftrightarrow \ 26 + 3z - y = 27 \ \Leftrightarrow \ 3z - y = 1.</math>

og

(2) <math>(13 + z - y) - 3y - 2z = -9 \ \Leftrightarrow \ 13 - z - 4y = -9 \ \Leftrightarrow \ 4y + z = 22.</math>

Disse to ligningene har da kun to ukjente, <math>x</math> og <math>y</math>, og da kan vi gjenta prosessen for å finne dem. I fra (1) får vi at <math>y = 3z - 1</math>. Setter vi det inn i (2) får vi

<math>4(3z - 1) + z = 22 \ \Leftrightarrow \ 13z = 26 \ \Leftrightarrow \ z = 2.</math>

Da er <math>y = 3z - 1 = 3 \cdot 2 - 1 = 5</math> og <math>x = 13 + z - y = 13 + 2 - 5 = 10</math>. Løsningene er altså <math>x = 10, \ y = 5, \ z = 2</math>.

Oppgave 5

a)

<math>f^\prime(x) = 3x^2 - 12x + 9</math>

Vi faktoriserer <math>f`\prime(x)</math> (ved å f.eks. benytte andregradsformelen til å finne nullpunkter) og får:

<math>f^\prime(x) = 3(x-1)(x-3).</math>

Da er <math>f^\prime(x) = 0</math> når <math>x = 1</math> eller <math>x = 3</math>. Tegner vi et fortegnsskjema ser vi at begge faktorer er negative frem til <math>x = 1</math>, så den deriverte er positiv og funksjonen dermed stigende for <math>x < 1</math>. Mellom <math>x = 1</math> og <math>x = 3</math> er fortegnene motsatte, slik at den deriverte blir negativ, og funksjonen altså avtagende. Situasjonen snur igjen for <math>x > 3</math>. Til sammen forteller dette oss at <math>x = 1</math> er et topp-punkt og <math>x = 3</math> er et bunnpunkt.

b)

<math>f^{\prime \prime}(x) = 6x - 12 = 6(x-2).</math>

<math>f^{\prime \prime}(x)</math> er lik <math>0</math> og skifter fortegn i <math>x = 2</math>. Dermed må <math>x = 2</math> være et vendepunkt.

c)

Ingen skisse for øyeblikket.

DEL TO