1T eksempeloppgave 2015 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 15: Linje 15:
===a)===
===a)===
$(a+b)^2 - (a-b)^2 = \\ a^2+2ab + b^2 - (a^2-2ab+b^2) = \\ a^2+2ab + b^2 - a^2 + 2ab -b^2 = \\ 4ab$
$(a+b)^2 - (a-b)^2 = \\ a^2+2ab + b^2 - (a^2-2ab+b^2) = \\ a^2+2ab + b^2 - a^2 + 2ab -b^2 = \\ 4ab$
===b)===
==Oppgave 3==
===a)===
===b)===
==Oppgave 4==
===a)===
===b)===
===c)===
==Oppgave 5==
===a)===


===b)===
===b)===

Sideversjonen fra 23. apr. 2015 kl. 05:29

DEL EN

Oppgave 1

a)

$8,20 \cdot 10^9 \cdot 1,50 \cdot 10^{-3}= \\ 12,30 \cdot 10^{9-3} = \\ 1,23 \cdot 10^7$

b)

$\frac{(a^2)^4 \cdot ( \frac ba)^2}{a^3 \cdot b^{-2}} = \frac{a^8 \cdot \frac{b^2}{a^2}}{a^3b^{-3}} = a^{8-5}b^4 = a^3b^4$

Oppgave 2

a)

$(a+b)^2 - (a-b)^2 = \\ a^2+2ab + b^2 - (a^2-2ab+b^2) = \\ a^2+2ab + b^2 - a^2 + 2ab -b^2 = \\ 4ab$

b)

Oppgave 3

a)

b)

Oppgave 4

a)

b)

c)

Oppgave 5

a)

b)