Modellering: Forskjell mellom sideversjoner
Ingen redigeringsforklaring  | 
				|||
| Linje 8: | Linje 8: | ||
==Teknikker for modellering==  | |||
Algoritmene som brukes i tilpasningen av kuver til datapunkter er ofte så lange og omfattende at kun datamaskiner brukes. Det er likevel lurt å være klar over kriteriene som brukes for å bedømme om en gitt kurve er en god tilpasning, og hvilken kurve blandt flere som best beskriver den.  | |||
===Korrelasjonskoeffesienten===  | ===Korrelasjonskoeffesienten===  | ||
Sideversjonen fra 28. jan. 2010 kl. 10:58
Modellering er en del av statistisk analyse der man fra en mengde målepunkter prøver å finne en matematisk sammenheng mellom variabler (parametre) og målinger.
Når man lager modeller har man i mange tilfeller bruk for et grafisk hjelpemiddel som kan gjøre grovarbeidet. Til dette brukes vanligvis grafiske kalkulatorer på skolen. Et gratis alternativ er Geogebra.
Statistisk modellering har anvendelser i mange praktiske fag, som fysikk, kjemi, økonomi og ingeniørfag.
Hovedfokuset i fagene i videregående skole er å fra målepunktene kunne virdere hvilken type funksjon som best vil beskrive sammenhengen mellom parametre og målinger.
Teknikker for modellering
Algoritmene som brukes i tilpasningen av kuver til datapunkter er ofte så lange og omfattende at kun datamaskiner brukes. Det er likevel lurt å være klar over kriteriene som brukes for å bedømme om en gitt kurve er en god tilpasning, og hvilken kurve blandt flere som best beskriver den.





