R1 2019 høst LØSNING: Forskjell mellom sideversjoner
Linje 63: | Linje 63: | ||
Areal av skravert område blir da | Areal av skravert område blir da | ||
$A_{skravert} = \frac 14 \pi \cdot2^2 - x \cdot \sqrt{4-x^2} = \pi - x \sqrt{4-x^2}$ | |||
===b)=== | ===b)=== |
Sideversjonen fra 23. des. 2019 kl. 06:17
Diskusjon av oppgaven på matteprat
Løsningsforslag del 2 fra Kristian Saug
Løsningsforslag (pdf) fra joes
Løsningsforslag fra Svein Arneson
DEL EN
Oppgave 1
a)
b)
c)
Oppgave 2
Oppgave 3
a)
Dersom P(x) skal deles på (x-2) og gå opp. må P(x) = 0, dvs. P(2) = 0
b)
Bruker så ABC formel på svaret og får:
Faktorisert form:
c)
Oppgave 4
Oppgave 5
Oppgave 6
a)
Diagonal i rektangelet er alltid 2. Arealet er alltid
Areal av skravert område blir da
b)
Oppgave 7
a)
CB er like lang som EB fordi begge linjestykker tangerer samme sirkelsektor ( i C og E).
b)
Begge trekantene har en felles vinkel i A. Begge trekanten har en vinkel på 90 grader (i C og E). Trekantene er derfor formlike.
Bruker formlikhet:
c)
Trekanten ABC har areal:
Fra figuren ser vi at trekantene CDB og ADB utgjør trekanten ABC
Areal CDB:
Areal: ADB:
Kombinerer:
d)