S1 2022 Vår LK20 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Quiz (diskusjon | bidrag)
Linje 192: Linje 192:


==Oppgave 5==
==Oppgave 5==
[[File: S1-v22-del2-5.png]]


==Oppgave 6==
==Oppgave 6==


==Oppgave 7==
==Oppgave 7==

Sideversjonen fra 28. des. 2022 kl. 19:49

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsningsforslag laget av Farhan Omar

DEL 1

Oppgave 1

(2a)1(b2)3(ab)3

=21a1b323a3b3

=21+3a1+3b3+3

=22a2b0

=4a2

Oppgave 2

E(x)=0,2x+40+20000x

E(x)=0,220000x2

E(100)=0,2200001002=0,22000010000=0,22=1,8

E(100) forteller oss at en dag det produseres 100 luer, ville produksjonskostnaden synke med 1,8 kroner per lue, dersom fabrikken skulle øke produksjonen med 1 lue.

Oppgave 3

limx3x3x2+x12

=limx3x3(x3)(x+4)

=limx31x+4

=17

Oppgave 4

e2xex=2

(ex)2ex2=0

Setter u=ex

u2u2=0

(u+1)(u2)=0

u=1u=2

ex=1ex=2

Forkaster det negative svaret fordi ln(-1) ikke er definert.

ln(ex)=ln(2)

x=ln(2)

Oppgave 5

lg(x+3)+lgx=lga

Setter inn x=7.

lg(7+3)+lg7=lga

lg10+lg7=lga

lg(107)=lga

lg70=lga

a=70

Oppgave 6

a)

Eleven ønsker å finne ut hvor stor andel av en million kast med to terninger, som ender med at summen av de to terningene er 9 (i samme kast).

Linje 1: importerer "randint"-funksjonen fra "random"-biblioteket Linje 4: setter variabelen N til en million Linje 5: setter variabelen "gunstige" til null

Line 7: dette er en for-løkke, som går N ganger, altså en million ganger i dette tilfellet.

Linje 8-9 (inni for-løkka): to tilfeldige tall, a og b, genereres med "randint"-funksjonen. Tallene a og b er mellom 1 og 6 (tilsvarende 2 terninger).

Linje 10-11 (inni for-løkka): en if-setning sier at dersom summen av tallene a og b er lik 9, økes variabelen "gunstige" med 1.

Linje 13: her skrives andelen gunstige utfall ut, altså antall ganger summen av "terningene" ble 9, delt på antall forsøk (en million terningkast med to terninger).

b)

Sum 9 på to terninger er mulig å oppnå på 4 måter: 6+3, 5+4, 4+5, 3+6. Totalt er det 6*6=36 mulige utfall ved kast av to terninger.

Vi har at P(sum9)=436=19

DEL 2

Oppgave 1

a)

Velger å la x-verdiene være antall år etter 1960, og bruker regresjonsanalyse i Geogebra.

Velger en eksponentiell modell, da denne passer godt til dataene vi har. I tillegg er det usannsynlig at antall gårdsbruk i Norge blir null, så en eksponentiell modell hvor antall gårdsbruk fortsetter å avta uten å bli null, passer godt.

Modellen er g(x)=2078140,972x

b)

Skriver x=100 i Geogebra (tilsvarer 100 år etter 1960, altså 2060) og finner skjæringspunktet mellom x=100 og grafen til g. Se punkt A=(100,12061). Ifølge modellen min vil det være 12061 gårdsbruk i Norge i 2060.

c)

Bruker CAS i Geogebra og løser likningen g(x)=1000. CAS regner ut at x=62,4. Det vil si at ifølge modellen min, vil antall gårdsbruk i Norge avta med ca. 1000, ca. 62 år etter 1960, altså i år 2022.

Oppgave 2

a)

Vi må gå ut fra at:

- sannsynligheten for at en oppkjøring blir bestått, er en uavhengig hendelse (ulike oppkjøringer påvirker ikke hverandre)

- det er kun to utfall: bestått eller ikke bestått (dette kan vi trygt anta)

- det er en fast sannsynlighet for at en oppkjøring blir bestått (0,74)

b)

Bruker sannsynlighetskalkulatoren i Geogebra.

Sannsynligheten for at minst 8 av de 12 elevene består oppkjøringen er 0,821

c)

Bruker sannsynlighetskalkulatoren i Geogebra.

P(5 av 7 gutter OG 4 av 5 jenter) = 0,315*0,3898 = 0,123

Sannsynligheten for at akkurat 5 av guttene og akkurat 4 av jentene består oppkjøringen er 0,123

Oppgave 3

a)

Årlig vekstfaktor: 1,00312=1,037

Årlig rentesats er 3,7 %

b)

Bruker CAS i Geogebra.

Kan bruke månedlig eller årlig vekstfaktor. Det går ca. 44 måneder, eller 3 år og 8 måneder, før han har 80 000 kr på kontoen.

c)

T(x)={700001,003x,x<24700001,003x+20001,007x,x24

Funkjonen T(x) er ikke kontinuerlig for xR. T(x) er en funksjon med delt forskrift. Grenseverdien når x går mot 24 (måneder) fra venstre, er ikke lik grenseverdien når x går mot 24 (måneder) fra høyre. Det betyr at funksjonen T er diskontinuerlig.

d)

Kan løse oppgaven grafisk og/eller i CAS. Her er begge deler vist.

Det tar ca. 318 måneder, eller 26,5 år, før T(x) blir større enn 200 000 kr.

Oppgave 4

Her kan vi la oss inspirere av programmet i del 1, oppgave 6, med noen modifikasjoner.

Programmet simulerer en million kast med 3 terninger. Jeg kjører programmet flere ganger, og får hver gang en sannsynlighet for å vinne på rundt 0,092.

Oppgave 5

Oppgave 6

Oppgave 7