Antiderivering: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Ingen redigeringsforklaring
Linje 1: Linje 1:
Antiderivasjon er den inverse (motsatte) operasjonen av derivasjon. Den antideriverte av en funksjon <tex>F(x)</tex> er derfor en funksjon <tex>f(x)</tex> slik at <tex>F'(x)=f(x)</tex>.  
Antiderivasjon er den inverse (motsatte) operasjonen av derivasjon. Den antideriverte av en funksjon <tex>F(x)</tex> er derfor en funksjon <tex>f(x)</tex> slik at <tex>F'(x)=f(x)</tex>.  


 
<blockquote style="padding: 1em; border: 3px dotted red;">
 
'''Eksempel''' <p></p>
== Eksempler ==
Den antideriverte av f(x)= x er <tex>\frac12 x^2</tex> siden <tex>(\frac12 x^2)^,=x</tex>. Til forskjell fra ubestemt integrasjon sløyfer vi vanligvis konstantleddet.
 
 
</blockquote>
Den antideriverte av f(x)=x er <tex>\frac12 x^2</tex> siden <tex>(\frac12 x^2)^,=x</tex>. Til forskjell fra ubestemt integrasjon sløyfer vi vanligvis konstantleddet.

Sideversjonen fra 22. jun. 2010 kl. 08:17

Antiderivasjon er den inverse (motsatte) operasjonen av derivasjon. Den antideriverte av en funksjon <tex>F(x)</tex> er derfor en funksjon <tex>f(x)</tex> slik at <tex>F'(x)=f(x)</tex>.

Eksempel

Den antideriverte av f(x)= x er <tex>\frac12 x^2</tex> siden <tex>(\frac12 x^2)^,=x</tex>. Til forskjell fra ubestemt integrasjon sløyfer vi vanligvis konstantleddet.