1T 2024 høst LØSNING: Forskjell mellom sideversjoner
Linje 113: | Linje 113: | ||
===Oppgave 2=== | ===Oppgave 2=== | ||
Vi har 12 likesidede trekanter. Vi bruker arealsetningen på en enkelt trekant og multipliserer med tolv, for å få arealet av hele stjernen: Alle sider i de små trekantene er 4 og alle vinkler er 60 grader. | |||
===Oppgave 3=== | ===Oppgave 3=== |
Sideversjonen fra 25. nov. 2024 kl. 09:47
Diskusjon av oppgaven på matteprat
DEL EN
Oppgave 1
2u blir 60 grader og fra figuren ser vi at
Oppgave 2
Vi ser at dette er en andregradsfunksjon med nullpunkter for x= -3 og x = 1. Vi har symmetri så funksjonen vil ha sin laveste verdi når x = -1.
Bunnpunkt (-1, 4)
Oppgave 3
Vi utfører en polynom divisjon for å faktorisere uttrykket.
Vi observerer at f(1) = 0, da er f delelig med (x-1).
Så faktoriserer vi andregradsuttrykket:
Bruker ABC formelen og finner at
Da har vi at
Så lager vi et fortegnsskjema for å finne ut for hvilke verdier f(x) er negativ, null og positiv:
Da har vi et fortegnsskjema som viser når f er positiv og negativ. Dette stemmer med grafen nedenfor.
Da gjennstår det bare å se på
f skal være mindre enn null. Det er den i området fra minus uendelig til -6 og mellom -2 og 1.
Oppgave 4
a)
Tangens er sinus delt på cosinus. Tangens til 50 grader er større enn en fordi
b)
Vinkelen befinner seg i andre kvadrant der cosinus er negativ og sinus positiv. Da er tangens negativ, altså mindre enn null.
Oppgave 5
Arealet av det store kvadratet:
Dette er en matematisk identitet, 1. kvadratsetning. Det andre leddet på høyre side, 2ts er arealet av de to rektangelene i fuguren, som begge har areal t ganger s.
DEL TO
Oppgave 1
a)
b)
Mellom 2014 og 2024 mister avisen i gjennomsnitt 151 papir abonnenter per år.
c)
Dersom vi regner origo som 1. januar 2010 vi antall digitalabonnenter passere papirabonnentene på sommeren i 2021.
Oppgave 2
Vi har 12 likesidede trekanter. Vi bruker arealsetningen på en enkelt trekant og multipliserer med tolv, for å få arealet av hele stjernen: Alle sider i de små trekantene er 4 og alle vinkler er 60 grader.
Oppgave 3
For vertikal asymptote i 2, må nevner bli null for x=2.
Når x = - 3 må telleren bli null (nullpunkt). I tillegg må hele brøken gå mot 4 når x går mot uendelig.