Regning: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 264: Linje 264:
=== Desimaltall ===
=== Desimaltall ===


<blockquote style="padding: 1em; border: 3px dotted red;">
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;">
    
    


Linje 273: Linje 273:


12,42 har to desimaler. 3,012 har tre desimaler, derfor skal vi ha 2+3 = 5 desimaler i svaret.
12,42 har to desimaler. 3,012 har tre desimaler, derfor skal vi ha 2+3 = 5 desimaler i svaret.
</blockquote>
</div>





Sideversjonen fra 24. des. 2024 kl. 05:42


kommer



Denne siden behandler grunnleggende emner som regnerekkefølge, fortegn, parenteser og litt om tallmengder og tall. Tegnet ≠ brukes, og det betyr "ikke lik".


Tallsystem

Vi bruker titallsystemet som består av ti siffer, fra 0 til 9. I tillegg er det slik at plasseringen eller posisjonen til sifferet har betydning for verdien av tallet. Slike systemer kalles posisjonssystemer. Det romerske tallsystemet er et eksempel på at ikke alle tallsystemer er posisjonssystemer.


Posisjonssystemet

Eksempelvis betyr sifferet 3, i tallet 321, tre hundrere, mens det samme siffer i tallet 13, betyr tre enere. I tallet 0,2, betyr sifferet 2, to tideler, men i tallet 0,002 betyr det samme sifferet to tusendeler. Et talls størrelse kommer an på sifferests verdi og plassering (posisjon). Derfor er det viktig at man plasserer tallene under hverandre når man skal legge sammen og trekke fra.


Test deg selv

Tallinjen

Tallinjen inneholder uendelig mange tall, derfor er det naturlig å dele dem opp i ”familier”. Vi kaller slike familier for tallmengder. Tallene i en tallmengde har gjerne noe til felles.

Fortegn

Et tall kan ha to typer fortegn, negativt eller positivt. Et negativt tall skrives med et minus foran seg. Alle tall som ligger til høyre for null på tallinjen er positive. Alle tall til venstre for null er negative.

Et positivt tall er et tall med positivt fortegn altså et pluss. Vanligvis skriver vi ikke det positive fortegnet.

Tallene til høyre for null er positive. Til venstre for null på tallinja er tallene negative. Legg merke til at avstanden fra null til for eksempel 5 og -5 er den samme. Det betyr at tallverdien er lik, men fortegnet er forskjellig.

Regnerekkefølge

Når vi regner bruker vi forskjellige symboler for de forskjellige regneoperasjoner som addisjon, subtraksjon, multiplikasjon og divisjon. Symbolene er:

  • Addisjon +
  • subtraksjon -
  • Multiplikasjon <math> \cdot </math>
  • divisjon :

I tilleg har man påtense og paranteser.

  • Potens: <math> a^n</math>, for eksempel <math> 5^2 = 5 \cdot = 25</math>
  • Parantes: <math>(a+b)\cdot c</math>

På samme måte som andre språk har grammatikk har matematikk også noen regler for hvordan de forskjellige operasjonene skal utføres. Regneoperasjonene utføres i denne rekkefølgen:

  • Potenser
  • Paranteser
  • Multiplikasjon og divisjon
  • Addisjon og subtraksjon

De fleste fei gjøres fordi elever regner direkte fra venstre mot høyre uten å ta hensyn til regnerekkefølgen:

Eksempel

5+2 · 10 = 25

5 + 2 ·10 ≠ 70

Mange elever tror at regnestykket over blir 70. Slik er det ikke fordi multiplikasjon utføres først (selv om addisjonstegnet kommer før multiplikasjonstegnet). SJEKK KALKULATOREN, mange kalkulatorer regner feil her!

Eksemplet over kan overstyres med paranteser, fordi parantesene forteller oss i hvilken rekkefølge ting skal skje.

Eksempel

5+2 · 10 = 25

Dersom man skriver stykket slik

(5+2) · 10 =

Da har man fått et helt annet regnestykke fordi parantesen forteller oss at det som er i den skal regnes ut før vi ganger. Stykket blir da:

(5+2) · 10 = (7)· 10 = 7· 10 = 70

Ved å bruke paranteser kan man styre regnerekkefølgen. Å skrive 5+(2 · 10) er unødvendig fordi multiplikasjon alltid kommer før addisjon.


Eksempel

<math> 3(2+3^2)+2(4-2^2)= \\ 3(2+9)+2(4-4)= \\ 3\cdot11 +0 = 33 </math>


Eksempel

<math>2+3\cdot 3 (1+2^3)-4\cdot2^2 = \\2+9 (1+8)-4\cdot4 = \\\\2+ 81-16 = 67 </math>

Test deg selv

Negative tall

Addisjon

3 + 2 = 5

3 + 1 = 4

3 + 0 = 3

3 + ( - 1 ) = 2

3 + ( - 2 ) = 1

3 + ( - 3 ) = 0

3 + ( - 4 ) = - 1

3 + ( - 5 ) = - 2

osv.

Fra tabellen ser vi at å addere et positivt og et negativt tall er det samme som å trekke fra tilsvarende positivt tall. [ 3 + ( - 2 ) = 1 og 3 - 2 = 1 ].

Test deg selv

Subtraksjon

3 - 2 = 1

3 - 1 = 2

3 - 0 = 3

3 - ( - 1 ) = 4

3 - ( - 2 ) = 5

osv.

å subtrahere et negativt tall er det samme som å legge til tilsvarende positive tall.


Test deg selv


Multiplikasjon

Når vi multipliserer et positivt og et negativt tall blir svaret negativt.

(-5) · 10 = - 50

Når vi multipliserer to negative tall blir svaret positivt.

(-5) · (-10) = 50

Test deg selv


Divisjon

Når vi dividerer et negativt og et positivt tall blir svaret negativt.

5 : (-10) = - 1/2

Når vi dividerer to negative tall blir svaret positivt.

(-5) : (-10) = 1/2

Test deg selv

Parenteser

Når vi løser opp en parentes med positivt fortegn beholder vi fortegnene inne i parentesen. Eks.

12 + ( -2 + 4 -1) = 12 - 2 + 4 -1 = 13

Når vi løser opp en parentes med negativt fortegn må vi skifte alle fortegnene inne i parentesen. Eks. 12 - ( - 2 + 4 - 1 ) = 12 + 2 - 4 + 1 =11


Eksempel

Har vi flere parentesnivåer begynner vi å løse opp parentesene innenifra.

<math>12 - ( 3 + ( 2 - ( - 8 ) + 4 ) - 2 ) +10 = \\ 12 - ( 3 + ( 2 + 8 + 4 ) - 2 ) +10 =

12 -( 3 + 2 + 8 + 4 - 2) + 10 = \\ 12 - 3 - 2 - 8 - 4 + 2 + 10 = 7 </math>

Test deg selv


Huskeregler

  • Like tegn blir pluss (++ og --).
  • Ulike tegn blir minus (+- og -+).
  • Når du løser opp en parentes med minus foran, skifter du fortegn på alle tallene inne i parentesen.

Dersom du synes dette er vanskelig kan du jo tenke litt på ordenes betydning og så trekke parallellen over til matematikk.

  • " I love you!" + positiv betydning
  • " I do not love you" - negativ betydning
  • " I love you. Not!" + og - gir negativ betydning.
  • " I do not love you. Not!" - og - gir en positiv betydning.
(NB: Dette er ikke god engelsk)

Multiplikasjon

Heltall

«Test deg selv» oppgavene i denne sekvensen må gjøres uten kalkulator. Dersom du bruker kalkulator lurer du ikke oss, men deg selv....


EKSEMPEL

Vi skal multiplisere 49 med 37.

Vi stiller opp slik:

a.

Begynn med det siste sifferet i det siste tallet (7) og multipliser det med det siste siffer i det første tallet (9).

Resultatet av multiplikasjonen er 63. 3 tallet skrives under 9 tallet og 6 tallet går i minnet over 4 tallet.

Fortsett med å multiplisere 7 med 4. Resultatet er 28. Vi må huske å legge til 6 som står i minne i fra forrige regneoperasjon. Da får vi 34, som skrives foran det 3 tallet som står fra før.

b.

Vi multipliserer så det første siffer i det siste tallet (3) med det siste siffer i det første tallet (9). 3 ganger 9 er 27. Vi begynner på ny linje og skriver 7 tallet under 4 tallet i linjen over. 2 tallet går i minnet over 6 tallet som står der fra før.

Vi fortsetter med å gange 3 med 4. Det er 12. Når vi legger til 2 som er i minnet blir det 14. Vi skriver 14 foran 7 tallet som står der fra før.

c.

Vi summerer de to tallene under streken. Svaret blir 1813.




Test deg selv

Desimaltall


EKSEMPEL

I eksempel 1 utførte vi multiplikasjon med to hele tall. Dersom vi skal multiplisere et eller to tall med desimaler er fremgangsmåten den samme. La oss se. Vi multipliserer 12,42 med 3,012.

12,42 har to desimaler. 3,012 har tre desimaler, derfor skal vi ha 2+3 = 5 desimaler i svaret.


Test deg selv

Divisjon

Dersom 100 kroner skal deles på 4 søsken kan det skrives slik; 100kr : 4 = Vi kaller det tallet som skal deles eller divideres (100kr.) for dividend. Det tallet som dividenden skal divideres med (4) kalles divisor. Svaret vi får, i dette tilfellet 25 kr., kalles kvotient.

For å kunne dividere må man kunne multiplisere.

Vi bruker begrepet "gå opp". Vi sier for eksempel at 2 går opp i 7 tre ganger. Det betyr at 2 multiplisert med 3 er mindre eller lik 7. Vi vet at 3 · 2 = 6. 7 - 6 = 1. 1. tallet kalles for resten. Resten er alltid mindre enn divisor. Dersom vi får en rest som er større enn divisor betyr det at divisor går flere ganger i dividend, eller del av dividend, enn vi trodde. Om man tror at 2 går 2 ganger i 7 vil man se at resten blir 3. Det betyr altså at 2 går 3 ganger (og ikke 2) i 7.

Nedenfor følger forskjellige divisjonsstykker med kommentarer / forklaring. Det er mye tekst til eksemplene, så det er lurt å konsentrere seg om et eksempel av gangen.


Divisjon med heltall der svaret blir heltall

Når vi skal dele 125 på 5 begynner vi med å se om 5 går opp i første siffer. Siden det er 1 går ikke det. Da prøver vi de to første siffer. Vi ser at 5 går 2 ganger i 12. Vi skriver 2 etter likhetstegnet. 2 ganger 5 er 10, som skrives under 12. Når vi trekker 10 fra 12 får vi 2 i rest. Vi flytter ned sifferet 5 i 125 slik at det står bak 2 tallet vi fikk i rest. 5 går opp i 25 fem ganger. Vi skriver 5 etter to tallet på svarplassen. 5 ganger 5 er 25. Vi skriver det under de 25 som står der fra før og trekker fra. Vi får 0 rest og stykket er løst.



Test deg selv

Divisjon med heltall der svaret blir desimaltall

2 går 1 gang i 2. Vi skriver 1 på svarplassen og 2 under 2 tallet i 209. Når vi trekker fra får vi 0 i rest. vi flytter ned 0 fra 209 og ser at 2 går 0 ganger i 0. Vi skriver 0 på svarplassen etter sifferet 1. Vi flytter ned 9 og ser at 2 går 4 ganger i 9. vi skriver 4 på svarplassen etter 0. 4 multiplisert med 2 er 8. Når vi trekker fra får vi 1 i rest. Nå har vi trukket ned de sifrene som er i 209. Vi tenker oss at det står 209,0 i stede for 209. Da kan vi trekke ned nullen etter komma samtidig som vi må huske å sette komma i svaret. Etter å ha trukket ned 0 står vi igjen med en rest på 10. 2 går 5 ganger i 10. Vi skriver 5 på svarplassen etter komma og skriver 10 under de 10 som står fra får. Når vi trekker fra 10, får vi 0 i rest og oppgaven er løst.


Test deg selv

Divisjon der divisor er større enn dividend

Når vi skal dele 23 med 46 ser vi med en gang at dividend er mindre enn divisor. Noen vil kanskje påstå at dette ikke går, men vi prøver allikevel. 46 ganger 1 er 46 og går ikke opp i 23. 46 ganger 0 er 0. Vi skriver 0 på svarplassen og 46 gange 0 som er 0 under 3 tallet. Vi trekker 0 fra 23 og står fortsatt igjen med 23. "Trikset" vi nå bruker er at vi later som det står 23,0 på dividend plassen. Da kan vi trekke ned 0, men må huske på å sette komma på svarplassen etter 0. Vi får da 230 og finner ut at 46 ganger 5 er 230. Vi skriver 5 på svarplassen etter komma. Vi trekker fra 230 og får 0 i rest og oppgaven er løst.


Test deg selv

Divisjon der dividend er et desimaltall

Vi begynner med å finne ut hvor mange ganger 12 går i 50. 12 · 4 er 48, altså går det 4 ganger. 4 tallet skrives på svarplassen og 48 skrives under 50. Når vi trekker 48 fra 50 får vi 2 i rest. Vi trekker ned 3 tallet bak 2 tallet. Siden 3 tallet er første siffer etter komma må vi huske å sette komma etter 4 tallet i svaret. Vi ser at 12 bare går en gang i 23. 1 skrives på tidelsplassen (rett etter komma). Vi trekker fra og får 11. Når vi trekker ned 6 tallet får vi 116. 12 ganger 9 er 108. Vi skriver det rett under 116 og trekker fra. Vi får 8 i rest og trekker ned en 0 (som det står uendelig mange av bak 6 tallet). 12 går 6 ganger i 80. Vi trekker fra 72 og får 8 i rest igjen. Slik kan vi fortsette i det uendelige. Hvor mange desimaler (tall etter komma) vi skal ta med avhenger av oppgaven og av hvor nøyaktige tallene man startet med er.


Test deg selv

Divisjon der divisor er et desimaltall

Dersom divisor er et desimaltall må vi multiplisere både divisor og dividend slik at desimalene forsvinner. Om vi har en desimal multipliserer vi med 10, om vi har to desimaler multipliserer vi med 100 osv. Når desimalene i divisor er borte utfører vi divisjonen på vanlig måte.



Test deg selv



Det lønner seg å bruke tid på denne siden da multiplikasjon og divisjon er selve fundamentet for videre arbeid. Men, dersom du har slitt med gangetabellen i mange år uten fortsatt å kunne den, anbefaler vi at du bruker kalkulator. Lykke til!





Faktorisering av tall

Faktorisering er ofte brukt i matematikken. Det går ut på å skrive et tall som produktet av faktorer. Tallet 4 kan skrives som 2 · 2. Dersom vi skriver 4 som 2 ·2 har vi faktorisert 4. Dette bruker vi ofte når vi skal finne fellesnevner eller forkorte.

Dersom vi skriver 8 = 2 · 4 har vi faktorisert 8. Men, vi har ikke primtallsfaktorisert siden 4 ikke er et primtall. Dersom vi skriver 8 = 2 · 2 · 2 har vi primtallsfaktorisert 8.

Gjør følgende:

Skriv tallet som skal faktoriseres på venstre side av en lang loddrett strek. Begynn med å prøve å dele tallet på 2. Dersom det er mulig skriver du 2 på høyre side av streken og svaret du får under tallet på venstre side av streken. Når du ikke kan dele på 2 lenger prøver vi med 3. Slik fortsetter vi med 5, 7 osv. Dersom man multiplisere alle primtallene på høyre side av streken skal man få det tallet man startet med.


Eksempel 1:
16 faktorisert skrives slik:

Vi delte på to fire ganger. Dersom vi multipliserer divisorene ender vi opp med det tallet vi startet med.


2 ·2 · 2 · 2 =16

16 på faktorisert form skrives altså som 2 · 2 · 2 · 2.


Eksempel 2:
Vi faktoriserer tallene 162, 12 og 4620.

Vi begynner med å dele på 2. Når det ikke går lenger prøver vi med det neste primtallet.

$162= 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 $


$12= 2 \cdot 2 \cdot 3 $


$4620 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 $

Delelighet

Delelig med 2:

Et tall er delelig med to når siste siffer i tallet er delelig med to eller når det slutter på null.



Eksempel 3:


24 er delelig med 2 fordi siste siffer, 4, er delelig med 2. 10 er delelig med to fordi det slutter med 0.



Delelig med 3:

Dersom tallets tverrsum er delelig med tre er tallet delelig med tre.


Eksempel 4:


36 er delelig med 3 fordi tverrsummen av 36 er 3 + 6= 9 og 9 er delelig med 3.


Delelig med 5:

Tall som ender på 0 og 5 er delelige med 5.


Eksempel 5:


65 er delelig med 5 fordi det siste siffer i tallet er 5.


Test deg selv

Fellesnevner

Når vi skal finne fellesnevner må vi først faktorisere alle nevnerne. Vi bruker metoden i eksempel 1 og 2:

Eksempel 6:

Vi har nevnerne 15, 8 og 20. Disse faktoriseres som vist i eksemplet over. Fellesnevneren må inneholde alle faktorene av 15, 8 og 20.

Vi begynner med den minste faktoren, 2. Den forekommer tre ganger i 8 og to ganger i 20. Vi har følgende regel:

"den som har flest vinner".


Vi begynner med de laveste tallet som er to. Åtte faktorisert gir tre (grønne) toere, altså skal disse med i fellesnevner. Når vi faktoriserer 15 får vi 3 og 5 (rød). Vi har ikke disse med i fellesnevnere fra før, så disse må være med. Fellesnevneren ser da slik ut:

Det betyr at vi trenger tre 2 -ere i fellesnevner. Neste tall er 3, som det bare er en av. Vi ser at det er to 5 -ere, en fra 15 og en fra 20. Vi tar med en 5 -er.

Fellesnevner, som også kalles minste felles multiplum, er:

FN = 2 · 2 · 2 · 3 · 5 = 120

Figuren viser at fellesnevner inkluderer alle faktorene som forekommer i hver av de faktoriserte nevnerne.



De faktorene som er med i fellesnevner og ikke i brøkens nevner, er de faktorene brøken må utvides med for at man oppnår å få fellesnevner i brøken. (se Brøkregning ).


MFM

Minste felles multiplum skrives ofte MFM. Dersom vi skal finne minste felles multiplum av 12 og 18 starter vi med å faktorisere begge tallene: 12 = 2·2·3 og 18 = 2·3·3. I dette tilfellet blir MFM = 2·2·3·3 = 36, fordi 36 er det minste tallet både 12 og 18 går opp i, altså deres minste felles multiplum.

Vi skriver det slik:

mfm(12, 18) = 36

Dette finne vi ved å samle primtallsfaktorene fra 2 og oppover, der flest antall "like" er tellende; vi samler 2-er faktorene fra 12 fordi 12 har to 2-er faktorer mens 18 bare har en. Treerfaktorene kommer fra 18 fordi 18 har to 3-er faktorer mot 12's ene.

SFD

Det største tallet som går opp i både 12 og 18 er 6. Vi sier at 6 er største felles divisor, sfd, eller største felles mål.

Vi skriver det slik:

sfd ( 12, 18) = 6

Sammenhengen mellom minste felles multiplum og største felles divisor er:

a·b = mfm (a ,b)· sfd (a, b)


Eksempel 7:

Produktet av 16 og 24 er $16 \cdot 24= 384$

$16= 2 \cdot 2 \cdot 2 \cdot 2$

$24= 2 \cdot 2 \cdot 2 \cdot 3$

$MFM(16, 24)= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 48$

$SFD(16, 24) = 2 \cdot 2 \cdot 2 = 8$

Vi observerer at

$MFM(16, 24) \cdot SFD(16,24) = 48 \cdot 8 = 384$ som jo er produktet av 16 og 24.


Faktorisering av ledd

$4x^2-8x = 4x(x-2)$

Uttrykket består av to ledd på venstre side. Ledd er uttrykk som adskilles av pluss eller minus. I eksempelet er $4x^2$ og $8x$ to ledd. På høyresiden har man tre faktorer, 4, x og (x-2). Faktorer er del av et produkt.

Når du har klart for deg hva et ledd er og hvor mange ledd det er i utrykket, ser du etter felles faktorer i leddene, og setter det / dem utenfor en parentes. Det som står igjen inni parentesen er den faktoren du må gange det som står på utsiden av parentesen med, for å komme tilbake til uttrykket som var utgangspunktet.

Test deg selv