2P 2012 høst ny LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 156: Linje 156:
[[File:2p-bokshoide-2013.png  ]]
[[File:2p-bokshoide-2013.png  ]]


Man ser at med tusen bokser får man 13 høyder og bruker
Man ser at med tusen bokser får man 13 høyder og bruker 119 bokser. Vi har da 181 bokser igjen. (mangler bare 15 bokser på å kunne lage en høyde til).

Sideversjonen fra 4. mai 2013 kl. 12:37

DEL EN

Oppgave 1

4, 5, 6, 8, 10, 10, 12, 12, 12, 15, 18, 20

Median: Gjennomsnitt av tall nr. 6 og 7 : 11

Typetall: den størrelsen som opptrer flest ganger 12

Gjennomsnitt: 4+5+6+8+10+10+12+12+12+15+18+2012=11

Variasjonsbredde: 20 - 4 = 16

Oppgave 2

a) Seks år fram i tid: V(6) = 100.0000,85t=100.0000,856

b) For seks år siden: V(6) =100.0000,85t=100.0000,85t=100.0000,856

Oppgave 3

0,00030,00000015=3,01031,5107=4,51011

Oppgave 4

(a3)2a5a30=a6+5(3)+0=a2

Oppgave 5

a) (23)220=26=64

b) (132)2=134=34=81

Oppgave 6

1010=1013=11910010=102013=121920010=211023=9429

Oppgave 7

Median. Vi sier at medianeleven er elev nr 5, altså den nest siste i interval nr. to. Får da 50+455090kr

Gjennomsnitte: antar at elevene fordeler seg jevnt i intervallene: 125+575+1125+317510105kr

Oppgave 8


Oppgave 9

a)

Ved opptelling ser man at figur <Math>f_5= 26</Math> og <Math>f_6= 31</Math>

b)

Flytter noen av perlene slik at man danner et rektangel med høyde to perler og bredde (2n+1) perle. Resten av perler som ikke får plass i rektangelet blir n-1. Man får: Antall = (2n+1)2 + (n-1) = 5n + 1.


<Math>f_{36} = 5 \cdot 36 + 1 = 181</Math>

c)

5n +1 = 1000 gir n = 199


DEL TO

Oppgave 1

a)

Pris per kg epler: <Math>\frac{(290-210)kr}{(7-3)kg}= \frac{80kr}{4kg} = 20kr/kg</Math>

Pris for korg: <Math>210kr - 3 \cdot 20kr = 210kr - 60 kr = 150kr</Math>


b)

P = 20x + 150

c)

P = 320

320 = 20x + 150

20x = 170

x = 8,5

Hun kjøpe en korg med 8,5 kilogram epler i.

Oppgave 2

a)

<Math>2\cdot60^2 + 30 \cdot 60^1 + 11 \cdot 60^0 = \ 7200 + 1800 + 11 = 9011</Math>

b)

<Math>\sqrt{113^2 - 112^2} = 15</Math>

Oppgave 3

a)

b)


c)

Varians er et mål på spredning. Når den blir mindre er spredningen i verdiene mindre. Det er naturlig at det er tettere fra 20- 40, da det vil være mange som ligger i gruppen like bak de aller beste.

Oppgave 4

Oppgave 5

a) Se figur. x- aksen viser årets tolv måneder og y- aksen antall kilogram pølser solgt.

b) Se figur. Modellen er gitt ved <Math>f(x)=-x^3+10,4x^2+20,9x+14,6</Math>

c) En økning på 20% i 2012 tilsvarer å multiplisere modellen i b med 1,2. Man får da den blå kurven. Man ser at pølsesalget ligger over 300kg i perioden mai til oktober.

Oppgave 6

Oppgave 7

a)


1+22+32+..+n2

Formelen er riktig fordi dersom høyden av stabelen er n bokser vil grunnflaten i pyramiden være n ganger n. Laget nummer to vil ha grunnflane (n-1) ganger (n-1) osv.

b)

1+22+32+42+52+62=1+4+9+16+25+36=91Pn=n(n+1)(2n+1)nP6=6(6+1)(26+1)6=713=91

c)

Oppgaven kan løses grafisk ved hjelp av et graf-tegneprogram, her Graph.

Man ser at med tusen bokser får man 13 høyder og bruker 119 bokser. Vi har da 181 bokser igjen. (mangler bare 15 bokser på å kunne lage en høyde til).