R1 2016 vår LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

oppgaven som pdf

Diskusjon av denne oppgaven


DEL EN

Oppgave 1

a)

f(x)=3x2+6x4

f(x)=6x+6=6(x1)

b)

g(x)=5ln(x3x)

g(x)=5(3x21)x3x

c)

h(x)=x1x+1

h(x)=x+1(x1)(x+1)2=2(x+1)2

Oppgave 2

a)

p(x)=x37x2+14x+k

p(x) er delelig med (x2) hvis og bare hvis p(2)=0

p(2)=874+142+k=828+28+k=8+k

8+k=0

k=8

b)

x37x2+14x8:(x2)=x25x+4(x32x2)5x2+14x8(5x210x)(4x8)

c)

Oppgave 3

a)

f(x)=x2e1x2

f(x)=2xe1x2+x22xe1x2=2xe1x2(1x2)

b)

c)

d)

Oppgave 4

a)

AB=AC=BC=6 cm

HB=12AB=3 cm

CH=(BC)2(HB)2=6232 cm=27=33 cm=33 cm

CF=CE=(BC)2+(BE)2=62+62 cm=262 cm=62 cm

HF=(CF)2(CH)2=7227 cm=45 cm=95 cm=35 cm

b)

AFAB=3+356=3(1+5)23=1+52=ϕ

Oppgave 5

Oppgave 6

a)

Antall mulige fagkombinasjoner med 2 realfag og 2 andre fag:

(52)(82)=542!872!=1028=280

b)

Antall mulige fagkombinasjoner med 4 fag hvor minst 2 er realfag:

(52)(82)+(53)(81)+(54)=280+5433!8+5=280+80+5=365

Oppgave 7

a)

b)

f(x)=x2+px+q

A=(0,1)

B=(p,q)

OS=OA+12AB=[0,1]+12[p,q1]=[p2,1+q12]=[p2,q+12]

S=(p2,q+12)

r=|AS|=(p2)2+(q12)2=p2+(q1)24=p2+(q1)22

c)

Likning for sirkel:

(xx1)2+(yy1)2=r2

(x+p2)2+(yq+12)2=p2+(q1)24

Skjæring med x-aksen:

y=0

(x+p2)2+(q+12)2=p2+(q1)24

(x+p2)2=p2+(q1)24(q+1)24

x+p2=±p24q2

x=p±p24q2

Nullpunkter til f(x):

x2+px+q=0

x=p±p24q2

Sirkelen skjærer x-aksen i nullpunktene til f(x).

DEL TO

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4