S2 2018 vår LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

oppgave som pdf

Diskusjon av denne oppgaven på matteprat

Løsning laget av mattepratbruker Tommy O.

DEL 1

Oppgave 1

a)

f(x)=2x34x+1f(x)=6x24

b)

g(x)=xex

g(x)=1exxex(ex)2=ex(1x)(ex)(ex)=1xex

c)

h(x)=ln(x2+4x)g(u)=ln(u),u=x2+4xh(x)=g(u)u(x)=1uu=2x+4x2+4x

Oppgave 2

I5x+y+2z=0II2x+3y+z=3III3x+2yz=3

Legger sammen likning II og III.

2x+3x+3y+2y+zz=335x+5y=0x+y=0x=y

Setter inn x=y i likning I.

5(y)+y+2z=04y+2z=02z=4yz=2y

Setter inn z=2y og x=y i likning II.

2(y)+3y+2y=33y=3y=1

x=y=1

z=2y=21=2

Løsning: x=1,y=1,z=2

Oppgave 3

a)

P(x)=x33x213x+15

P(1)=13312131+15=1313+15=0

x=1 er et nullpunkt, så P(x) er delelig med (x-1).

b)

Utfører polynomdivisjon for å faktorisere P(x)

Resten faktoriseres: x22x15=(x25x+3x+(5)3)=(x5)(x+3). Bruk andregradsformelen ved behov.

Vi har P(x)=(x5)(x1)(x+3). Bruker fortegnsskjema for å løse ulikheten.

P(x)>0 når 3<x<1 og x>5.

Løsningen kan også skrives som x3,1 og x5,

Oppgave 4

a)

Differansen, d, mellom to ledd i en aritmetisk rekke er konstant. Finner d:

a4=a1+d+d+d14=2+3d3d=12d=4

n 1 2 3 4 n
an 2 6 10 14
Formel 2+40 2+41 2+42 2+43 2+4(n1)=4n2

an=4n2

b)

Oppgave 5

a)

Dersom 1<k<1 i en geometrisk tallfølge an=a1kn1 sier vi at den konvergerer. I slike tilfeller er limnSn=limni=1nai=a11k

DEL 2

Oppgave 1

a)

Bruker Geogebra til å utføre en regresjonsanalyse på punktene i tabellen. Velger polynomfunksjon av 3. grad som modell for kostnadene, h(x). Se skjermbildet under.

Jeg har funnet en modell for kostnaden, h(x)=0,05x31.97x2+39,43x+501,02

Inntekten er 80 kroner per enhet, og kan uttrykkes som I(x)=80x.

For å finne en modell for overskuddet, O(x), bruker jeg CAS i Geogebra, og regner ut O(x)=I(x)-h(x). Se skjermbildet under.

Jeg har dermed vist at funksjonen O(x)=0,05x2+2,0x2+41x501 (noe avrundet) er en god modell for det daglig overskuddet til bedriften ved produksjon av x enheter.

b)