2P 2019 høst LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsning del 2 laget av mattepratbruker Kristian Saug


DEL EN

Oppgave 1

Oppgave 2

Dersom 15 stk er hvite og 40% er røde, vet vi at 60% tilsvarer 15 stk. Da er 20% lik 5 stk. 40% er da 10 stk.

154060=10

Vi deler 15 på 60 som gir en prosent, multipliserer med 40 for å finne hvor mange 40% er. Det er altså 10 stk.

Oppgave 3

1,21076,51060,0005=(126,5)1065104=5,55106(4)=111010=1,11011


Eller slik: 1,21076,51060,0005=1200000065000005104=55000005104

Oppgave 4

Vi omformer tallene slik at det blir lettere å sammenligne dem:

750=12322=32(23)2=6423=18142=116

Vi får da følgende rekkefølge :

142,23,750,2322,(23)2

Oppgave 5

Oppgave 6

Oppgave 7

Vi legger merke til at alle figurene kan deles i tre. De to gule delene er like. I figur 2 er antallet sirkler 22 i en gul del, og 32 i figur 3.

a)

Fra figuren over ser man at figur nr. 4 vil bestå av fire ganger fire, pluss fem ganger fem, pluss fire ganger fire antall kuler:

42+52+42=16+25+16=57

Det er 57 kuler i figur 4.

b)

Vi ser at de to "gule" kvadratene har sidekanter med samme antall kuler som figurnummer, mens det "røde" kvadratet i midten har en kule mer i sidekanten enn figurnummeret.

Kaller antall kuler for A(n)

Vi får da:

A(n)=n2+(n+1)2+n2=2n2+(n+1)2=2n2+n2+2n+1=3n2+2n+1

c)

Figur nr. 100:

A(100)=31002+2100+1=30000+200+1=30201