S1 2024 Høst LØSNING
Diskusjon av oppgaven på matteprat
DEL EN
Oppgave 1
Deriverer f:
Oppgave 2
Programmet leter etter toppunktet til funksjonen
Programmet løper gjennom en while løkke og sjekker funksjonsverdien O(x+1) i forhold til O(x). Så lenge O(x+1)> O(x) fortsetter løkken. Når det ikke lenger er tilfellet, skriver det ut x- verdien.
Vi deriver O og setter uttrykket lik null.
Programmet skriver ut 10000, som er x verdien som gir størst funksjonsverdi.
Oppgave 3
Vi er bare interessert i den positive verdien fordi vi ikke kan opphøye 10 i noe som gir en negativ verdi.
Oppgave 4
Oppgave 5
a)
To kuler med samme farge:
P(to i samme farge) = P(to røde) + P(to blå) + P( to gule)
b)
Nøyaktig en gul
Oppgave 6
Både g og f tilfredsstiller kravet om gjennomsnittlig vekstfart i intervallet [0,4]. g har derivert lik 0,5 for alle x, så det er kun f som tilfredsstiller kravene.
DEL TO
Oppgave 1
a)
Forskjellige antrekk (multiplikasjonsprinsippet):
FA =
b)
c)
Oppgave 2
a)
Gjennomsnittlig vekstfart:
Påstanden er riktig.
b)
Begge går mot samme grenseverdi når x går mot pluss eller minus uendelig. Påstanden er feil.
c)
Dersom to like grunntall skal være like når de er opphøyet i en eller annen eksponent, må også eksponentene være like. Påstanden er riktig.
Oppgave 3
Logaritmen til basisen for logaritmen er 1. Derfor er basis her 5.
Oppgave 4
Oppgave 5
Oppgave 6
a)
Den deriverte av I når x er 15 gir oss inntektsendringen ved salg av enhet 15. Man øker inntekten med 235 000 kroner ved salg av motor nr. 15.
b)
Overskuddet er størst når det selges 180 enheter.