Vi har:
f(x)=u(x)v(x),f´(x)=u´(x)⋅v(x)−u(x)⋅v´(x)(v(x))2,f´(x)=limΔx→0f(x+Δx)−f(x)Δx
Bevis:
f′(x)=limΔx→0u(x+Δx)v(x+Δx)−u(x)v(x)Δx=limΔx→0u(x+Δx)⋅v(x)−u(x)⋅v(x+Δx)Δx⋅v(x+Δx)⋅v(x)=limΔx→0u(x+Δx)⋅v(x)−u(x)⋅v(x)−u(x)⋅v(x+Δx)+u(x)⋅v(x)Δx⋅v(x+Δx)⋅v(x)=limΔx→0(u(x+Δx)−u(x)Δx