1P 2015 høst LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

Løsningsforslag (pdf) fra bruker joes. Send gjerne en melding hvis du har kommentarer til løsningsforslaget. På forhånd, takk.


DEL EN

Oppgave 1

a)

0,41,0=2,4x0,4x=2,4x=2,40,4x=6

Man bør ikke spise mere enn 6 gram salt daglig.

b)

Dersom 100g inneholder 0,8g vil 300g inneholde tre ganger så mye:

0,8g3=2,4g salt

En porsjon pizza inneholder 2,4 gram salt.

c)

2,40,4g=0,96g natrium.

0,96:2,4=9,6:24=0,4

Dvs 40% av dagsbehovet.

Oppgave 2

a)

Ved avlesning: skjæringspunkt i (2, 1).

b)

f(x)=g(x)12x=x+3x=2x+63x=6x=2

f(2)= 1

Skjæringspunkt mellom f og g : (2,1)

Oppgave 3

Reallønn = nominell lønn 100indeks

360000=450000100xx=45000000360000=125

Konsumprisindeksen var på 125 det året.

Oppgave 4

Dersom omvendt proporsjonale størrelser: y=kxxy=k


20kr / is 200 is = 4000 kr

25kr / is 160 is = 4000 kr

40kr / is 100 is = 4000 kr

Pris og antall er omvendt proporsjonale størrelser.

Oppgave 5

a)

Gutt: ( fars høyde + mors høyde) 0,5 + 7 cm

Jente: ( fars høyde + mors høyde) 0,5 - 7 cm


Ola: ( 180 cm + 160 cm) 0,5 + 7 cm = 177 cm

Kari: ( 180 cm + 160 cm) 0,5 - 7 cm = 163 cm


Kari blir 163 cm og Ola 177 cm, i følge formlene.

b)

( 186cm + mors høyde) 0,5 + 7 cm = 189 cm.

(186+x)0,5+7=189(186+x)0,5=182186+x=364x=178


Mor er 178 centimeter høy, i følge formelen.

Oppgave 6

a)

Volum av sylinder: V=πr2h

Ved overslag runder man tallen til noe som blir letterer å regne med, samtidig som man ikke bør fjerne seg for langt fra de eksakte verdiene. Når man ganger sammen to eller flere tall kan det være lurt å runde noen opp og noen ned:

V=π0,621,230,41,2=1,44

Alle benevninger var i meter, det betyr at svaret er i kubikkmeter: 1,44m3=1440dm3, som er det samme som 1440 liter.

Volumet til en rundball er i størrelsesorden 1400 liter. (Om du fikk et annet svar kan det være like riktig siden dette kun er et overslag).

b)

Overflate av sylinder:

O=2πr2+2πrh

Setter Pi = 3 og

Oppgave 7

Smittet Ikke smittet sum
Tester positivt 58 10 68
Tester ikke positivt 2 290 292
sum 60 300 360

b)

P( pos | smittet) = 5860=2930

c)

P( ikke smittet | pos test) = 1068=534

Oppgave 8

f(x)=x

Dette er en rett linje uten konstantledd, det betyr at grafen går gjennom origo. Den har stigningstall -1, (en til høyre, en ned) hvilket betyr a B er riktig graf.


g(x)=x2+x+2

Dette er en parabel eller andregradsfunksjon. Når det står minus forran andregradsleddet betyr det at den vender sin hule side ned. Den skjærer y-aksen i 2. Både graf A og F oppfyller disse kravene. Vi sjekker nullpunktet x = 2 for F: (22)+2+2=0. Graf F tillhører funksjonen g.

h(x)=12x+1

En rett linje som skjærer y-aksen i en og stiger med en halv. Graf E passer til funksjon h.

DEL TO

Oppgave 1

a)

b)

Kostnader og inntekter er like store for 20 og 70 enheter, fra figuren i a.

c)

For at overskuddet skal bli størst mulig må det produseres og selges 45 enheter. Overskuddet er da 5312,50 kroner.

Oppgave 2

a)

Dette er eksponentiell vekst, med vekstfaktor lik 0,85.

V(2)=86000,852=6213,50

Om to år er scooterens verdi ca 6200 kroner, i følge modellen.

b)

x0,853=8600x=86000,853x=14003,66

Når scooteren var ny kostet den 14 000 kroner.

Oppgave 3

a)

b)

c)

d)

Oppgave 4

a)

Nettolønna er 15 407 kroner i februar.


Formler:

b)

Hun overførte 3325,60 kroner til sparekontoen i februar.

c)

Oppgave 5

a)

AF, bruker pytagoras: AF=259=4

Trekant ADF er formlik med trekant ABG.

b)

c)

Vannet renner inn med konstant fart. Etter hvert som vannet stiger blir grunnflaten i kjeglestumpen større. For å fylle et gitt volum blir derfor høyden i kjeglestumpen mindre etter hvert som vannet stiger. Det betyr at vannet stiger saktere og saktere og at graf 3 illusterer dette.

Oppgave 6

a)

Jeg tolker det slik at det samme skoparet skal brukes tre dager på rad. Vi har parene A, B og C.

Sannsynlighet for å velge par A i tre dager: 131313

Men, det er tre par å trekke fra, AAA, BBB og CCC, derfor må man multiplisere med 3:

P(samme par tre dager på rad)= 3131313=19

b)

Første dag kan han velge tre av tre, andre dag to av tre og siste dag en av tre:

P( forskjellige sko hver dag) = 12313=29

Oppgave 7

a)

40km/h=40000m3600s=11,1m/s

b)

Bremselengde sommerføre:

Fart 40 km/h: s=v219,6f=(11,1m/s)219,60.8=7,9m


Fart 80 km/h: s=v219,6f=(22,2m/s)219,60.8=31,5m

Bremselengde vinterføre:

Fart 40 km/h: s=v219,6f=(11,1m/s)219,60.2=31,4m


Fart 80 km/h: s=v219,6f=(22,2m/s)219,60.2=125,7m

c)

Når farten dobbles blir bremselengden tilnærmet firedobblet. Dette gjelder både sommer og vinter.

31,57,9125,731,44

Bremselengde og fart er ikke proporsjonale størrelser. Om de hadde vært det skulle den ene dobble seg når den andre dobbler seg.

d)

Fra utregningene i b ser man at farten på vinterstid bør halveres om man ønsker samme bremselengde.

v2=19,5fsvsommer2vvinter2=19,6s0,819,6s0,2vsommervvinter=4=2