1T 2023 vår LK20 LØSNING
Diskusjon av oppgaven på matteprat
DEL 1
Oppgave 1
Oppgave 2
Oppgave 3
Oppgave 4
Oppgave 5
DEL 2
Oppgave 1
a)
Bruker Geogebra til å tegne grafen til T, og finner de to nullpunktene i definisjonsområdet: B=(5.8,0) og C=(8.9,0).
Temperaturen er over 0 grader Celsius fra 5,8 til 8,9 måneder etter 1. januar.
April: måned nr. 5. I tillegg 0,8*30 = 24 døgn inn i april. Juli: måned nr. 8. I tillegg 0,9*31 = ca. 28 døgn inn i juli.
Til sammen er temperaturen over 0 grader Celsius: 7 døgn i april + 31 døgn i mai + 30 døgn i juni + 28 døgn i juli = 96 døgn.
Oppgave 2
a)
Dersom lengden er 60 meter, blir bredden 10 meter. Arealet blir da
b)
Bruker Excel til å lage en oversikt. Bildet viser oversikten til venstre, og formlene som er brukt til høyre.
Det kan se ut som om Herman sin påstand er riktig. I oversikten er det største arealet når lengden er dobbel så stor som bredden.
c)
Funksjonen
Funksjonen viser at rektangelet har størst areal når lengden er 40, og da dobbelt så stor som bredden på 20.
Oppgave 3
Løser oppgaven i CAS.
Linje 1: Bruker arealsetningen til å bestemme arealet til trekant ABC.
Linje 2: Bruker cosinussetningen til å bestemme lengden AC.
Linje 3: Bruker cosinussetningen til å bestemme
Linje 4: Siden CAS gir svaret i radianer, deler jeg på grader-tegnet for å få
Linje 5: Bruker arealsetningen til å bestemme arealet til trekant ACD.
Linje 6: Legger sammen arealet til de to trekantene.
Arealet av figuren ABCD er ca. 50,8.
Oppgave 4
a)
Arealet av hvert rektangel er gitt ved:
Bruker CAS til å regne ut summen til arealet av de seks rektanglene.
Arealet er av de seks rektanglene er ca. 21,8.
b) og c)
Arealet av 6000 rektangler er ca. 20.
Oppgave 5
Løser oppgaven i CAS. Finner arealet av hver trekant uttrykt ved r (linje 1-3), og løser til slutt likningen for summen av arealene til de tre trekantene (linje 4) for å finne verdien til r.
Linje 1: bruker formelen for areal av en trekant, A = 1/2 * grunnlinje * høyde
Linje 2: arealsetningen.
Linje 3: arealsetningen.
Verdien av r er
Oppgave 6
a)
Bruker CAS til å bestemme topp- og bunnpunktene, og ser på grafen at dette er topp- og bunnpunkt (og f.eks. ikke terrassepunkt).
Grafen til f har et toppunkt i (0,2) og et bunnpunkt i (2,-2).
b)
Hvis man tegner en generell tredjegradsfunksjon uten førstegradsledd i Geogebra,
Dersom man deriverer denne generelle tredjegradsfunksjon uten førstegradsledd, f, ser man at den deriverte alltid er lik 0 når x = 0. Det vil si at grafen til f har et topp- bunn- eller terrassepunkt i x = 0, for alle verdier av a, b og d. Et eventuelt annet ekstremalpunktet vil avhenge av verdien til a og b. Jeg bruker CAS for å vise dette: