Forskjell mellom versjoner av «1T 2018 vår LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 146: Linje 146:
 
Utfallsrom for at summen av antall øyne er 5 eller mindre:
 
Utfallsrom for at summen av antall øyne er 5 eller mindre:
  
$U_1={(1,1),(1,2),(2,1),(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1)}$. Det gir oss 10 mulig utfall.
+
$U_2={(1,1),(1,2),(2,1),(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1)}$. Det gir oss 10 mulig utfall.
  
 
Sannsyngliheten for at summen av antall øyne er 5 eller mindre er $\frac{10}{36}$.  
 
Sannsyngliheten for at summen av antall øyne er 5 eller mindre er $\frac{10}{36}$.  

Revisjonen fra 31. jul. 2018 kl. 12:23

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsning laget av LektorNilsen


DEL EN

Oppgave 1

<math> \left[ \begin{align*}5x +2y =4 \\ 3x + 4y = -6 \end{align*}\right] </math>

Ganger første likning med -2 for å bruke addisjon, slik at y forsvinner.

<math> \left[ \begin{align*}- 10x - 4y = -8\\ 3x + 4y = -6 \end{align*}\right] </math>

Legger likningen sammen og får

$-7x = -14 \\ x=2$

Setter x = 2 inn i første likning og får at y er:

$5x+2y =4 \\ 10 + 2y = 4 \\ 2y = -6 \\ y = -3$

Løsning: $x= 2 \wedge y= -3$

Oppgave 2

$3 \cdot 10^x = 3000 \\ 10^x = 1000 \\ x lg 10 = lg 1000 \\ x \cdot 1 = lg 1000 \\ x = 3$

Oppgave 3

$ \frac{(0,5 \cdot 10^6)^2}{0,2 \cdot 10^{-4} + 3 \cdot 10^{-5}} = \frac{0,25 \cdot 10^{12}}{2 \cdot 10^{-5} + 3 \cdot 10^{-5}} = \frac{25 \cdot 10^{10}}{5 \cdot 10^{-5}} = 5 \cdot 10^{15} $

Oppgave 4

$\sqrt{15 }\cdot \sqrt5 - \sqrt{48} = \sqrt {3 \cdot 5 \cdot 5} -\sqrt{4 \cdot 4 \cdot 3 } = 5 \sqrt3 - 4 \sqrt 3 =\sqrt 3$

Oppgave 5

$lg1000 \cdot lg \sqrt[3]{10} \cdot lg \sqrt[5]{10^2} \cdot lg 0,00001 \\= lg10^3 \cdot lg10^{\frac{1}{3}} \cdot lg10^{\frac{2}{5}} \cdot lg10^{-5} \\ = 3 \cdot \frac{1}{3} \cdot \frac{2}{5} \cdot (-5) = -2$

Oppgave 6

a)

$x (x+2) (x-4) = x (x^2-4x+2x-8) = x ( x^2 - 2x - 8) = x^3 -2x^2-8x$

b)

$x^3 -2x^2-8x = 0 \\ x (x+2) (x-4) = 0 \\ x=-2 \wedge x=0 \wedge x=4$

Oppgave 7

$ x^2-2x-8=0 \\ (x+2)(x-4)=0 \\ x=-2 \wedge x=4 $

Capture1.jpg

$ x^2-2x-8 \geq 0 $ for $x<-2$ og $x>4$

Oppgave 8

Bruker abc-formelen $x = \frac{-b \sqrt{b^2- 4ac}}{2a}$ for å finne funksjonens nullpunkter, a=1, b=k, c=4.

$ x^2 +kx + 4 = 0 \\ x = \frac{-k \sqrt{k^2- 4 \cdot 1 \cdot 4}}{2 \cdot 1} \\ x = \frac{-k \sqrt{k^2- 16}}{2} $

Dersom likningen er uløselig, har grafen til f ingen skjæringspunkter med x-aksen (dvs. ingen nullpunkter). Dette skjer dersom verdien under kvadratroten er negativ, siden kvadratroten av et negativt tall ikke gir noen reelle løsninger.

Dersom verdien under kvadratroten er 0, får likningen bare én løsning, og grafen til f bare ett skjæringspunkt med x-aksen (dvs. ett nullpunkt).

Dersom verdien under kvadratroten er positiv, får likningen to løsninger, og grafen til f to skjæringspunkter med x-aksen (dvs. to nullpunkt).

Vi løser likningen $k^2-16 = 0$ for å finne hvilke verdier av k oppfyller de ulike mulighetene.

$k^2=16 \\ k= \pm \sqrt{16} \\ k=-4 \wedge k=4$

Capture2.jpg

Vi ser at grafen til f har

$\bullet$ ingen skjæringspunkter med x-aksen for $-4<k<4$

$\bullet$ ett skjæringspunkt med x-aksen for $k=-4$ og $k=4$

$\bullet$ to skjæringspunkter med x-aksen for $k<-4$ og $k>4$

Oppgave 9

a)

$ \frac{x+2+\frac{1}{x}}{\frac{x}{3}-\frac{1}{3x}} = \frac{3x(x+2+\frac{1}{x})}{3x(\frac{x}{3}-\frac{1}{3x})} = \frac{3x^2+6x+3}{x^2-1} $

b)

$ \frac{x+2+\frac{1}{x}}{\frac{x}{3}-\frac{1}{3x}} = \frac{3x^2+6x+3}{x^2-1} = \frac{3(x^2+2x+1)}{(x+1)(x-1)} = \frac{3(x+1)(x+1)}{(x+1)(x-1)} = \frac{3x+3}{x-1}$

Oppgave 10

a)

$f(x)=x^3+2x^2+1$

Gjennomsnittlig vekstfart $a=\frac{y_2-y_1}{x_2-x_1}$

$x_1=-2$

$x_2=2$

$y_1=f(-2)=(-2)^3+2\cdot(-2)^2+1=-8+8+1=1$

$y_2=f(2)=2^3+2\cdot2^2+1=8+8+1=17$

$a=\frac{17-1}{2-(-2)}=\frac{16}{4}=4$

Den gjennomsnittlige vekstfarten til f i intervallet [-2,2] er 4.

b)

$f(x)=x^3+2x^2+1$

$f'(x)=3x^2+4x$

Likning for tangenten i et punkt $(x_1,y_1): (y-y_1)=a(x-x_1)$

$x_1=1$

$y_1=f(1)=1^3+2\cdot1^2+1=1+2+1=4$

$a=f'(1)=3\cdot 1^2 +4 \cdot 1 = 3+4=7$

Likning for tangenten til grafen til f i punktet $(1,f(1))$:

$(y-4)=7(x-1) \\ y=7x-7+4 \\ y=7x-3$

Oppgave 11

Når man kaster to terninger er det $6\cdot 6 = 36$ mulige utfall.

Utfallsrom for at terningene viser samme antall øyne:

$U_1={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}$. Det gir oss 6 mulig utfall.

Sannsyngliheten for at terningne viser samme antall øyne er $\frac{6}{36}$

Utfallsrom for at summen av antall øyne er 5 eller mindre:

$U_2={(1,1),(1,2),(2,1),(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1)}$. Det gir oss 10 mulig utfall.

Sannsyngliheten for at summen av antall øyne er 5 eller mindre er $\frac{10}{36}$.

Det er altså alternativ 2, "summen av antall øyne er 5 eller mindre", som er mest sannsynlig.

Oppgave 12