Forskjell mellom versjoner av «1T 2021 vår LK20 LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
(21 mellomliggende revisjoner av samme bruker vises ikke)
Linje 191: Linje 191:
 
[[File: 1T_V21_del2_14a.png|200px]]
 
[[File: 1T_V21_del2_14a.png|200px]]
  
Her ser det ut som nullpunktene til g har inverse verdier av nullpunktene til f. Men det kan også se ut som nullpunktene til f er 6 ganger større enn nullpunktene til g. Jeg tester med flere eksempler.
+
Her ser det ut som nullpunktene til g har inverse verdier av nullpunktene til f. Men det kan også se ut som nullpunktene til f er 6 ganger større enn nullpunktene til g. Jeg tester med flere eksempler, for eksempel dette:
 +
 
 +
[[File: 1T_V21_del2_14a2.png|300px]]
  
 
I oppgave b skal jeg finne ut om dette gjelder for alle slike polynomer.
 
I oppgave b skal jeg finne ut om dette gjelder for alle slike polynomer.
Linje 197: Linje 199:
 
===b)===
 
===b)===
  
Bruker CAS i Geogebra til å sjekke sammenhengen mellom nullpunkter for alle slike polynomer med "omvendt rekkefølge" på koeffisientene a,b og c. Ser at for alle koeffisienter, så er forholdet mellom nullpunktene til to slike polynomer, at nullpunktene til funksjonen h, er $\frac{c}{a}$ ganger nullpunktene til funksjonen i.
+
Bruker CAS i Geogebra til å sjekke sammenhengen mellom nullpunkter for alle slike polynomer med "omvendt rekkefølge" på koeffisientene a,b og c. Ser at for to slike polynomer h og i, så er forholdet mellom nullpunktene slik at nullpunktene til funksjonen h, er $\frac{c}{a}$ ganger nullpunktene til funksjonen i.
 +
 
 +
[[File: 1T_V21_del2_14b.png|400px]]
 +
 
 +
=Oppgavetype 3=
 +
 
 +
I disse oppgavene får du presentert en situasjon eller en problemstilling som du selv må undersøke og utforske.
 +
 
 +
==Oppgave 15==
 +
 
 +
Jeg bruker glidere i Geogebra til å utforske hvilke verdier av a og b som gir et skjæringspunkt der begge koordinatene er positive hele tall. Sette gliderne til å være hele tall fra 1 til f.eks. 20.
 +
 
 +
[[File: 1T-V21-del3-15.png|600px]]
 +
 
 +
Jeg kan bruke grafene til å begynne å se sammenhenger, men jeg kan også finne skjæringspunktet mellom g og f ved regning, ved å sette f=g.
 +
 
 +
$ax=\frac{b}{x}$
 +
 
 +
$x^2=\frac{b}{a}$
 +
 
 +
$x=\sqrt{\frac{b}{a}}$
 +
 
 +
For at x skal være et helt positivt tall, må b/a gi et kvadrattall. Alle kombinasjoner av b/a som gir et kvadrattall, gir et skjæringspunkt der x er et positivt helt tall.
 +
 
 +
F.eks:
 +
 
 +
a=1, b=1,4,9,16,25...
 +
 
 +
a=2, b=2,8,18,36,50...
 +
 
 +
a=3, b=3,12,27,...
 +
 
 +
a=n, b=k*n, der n er et naturlig tall og k er et kvadrattall.
 +
 
 +
Både x- og y-koordinatene i skjæringspunktet skulle være positive, hele tall. Jeg må sjekke at alle kombinasjoner av b/a som gir kvadrattall, ikke bare gir en x-koordinat som er et positivt helt tall, men også en y-koordinat som er et positivt helt tall.
 +
 
 +
Finner y-koordinaten hvis $x=\sqrt{\frac{b}{a}}$
 +
 
 +
$f(\sqrt{\frac{b}{a}})=a\cdot \sqrt{\frac{b}{a}} = a\cdot \frac{\sqrt{a}\sqrt{b}}{\sqrt{a}\sqrt{a}} = a\cdot \frac{\sqrt{ab}}{a}=\sqrt{ab}$
 +
 
 +
Setter inn a=n, b=k*n, der n er et naturlig tall og k er et kvadrattall.
 +
 
 +
$y = \sqrt{ab} = \sqrt{n\cdot k\cdot n} = n\sqrt{k}$
 +
 
 +
Et naturlig tall ganger roten av et kvadrattall vil alltid gi et positivt, helt tall.
 +
 
 +
Dermed har vi vist at for alle a=n og b=k*n, der n er et naturlig tall og k er et kvadrattall, så vil skjæringspunktet mellom f og g ha koordinater som er positive, hele tall.
 +
 
 +
==Oppgave 16==
 +
 
 +
Cosinussetningen:
 +
 
 +
$a^2=b^2+c^2-2bc\cdot cos A$
 +
 
 +
Siri har likningen:
 +
 
 +
$a^2=8^2+x^2-8x$
 +
 
 +
hvilket må bety at
 +
 
 +
$2 cos A = 1$
 +
 
 +
$cos A = \frac{1}{2}$
 +
 
 +
$A=60^o$
 +
 
 +
Bruker en glider for a i Geogebra, og bruker CAS til å regne ut mulige verdier av x (linje 1 i CAS). Bruker grafikkfeltet til å tegne de ulike trekantene. Ser av linje 2 i CAS at a (n i linje 2) må være minst 7 for at vi skal få en trekant som tilfredsstiller likningen. For eksempel:
 +
 
 +
[[File: 1T_V21_del3_16.png|600px]]
 +
 
 +
Er a = 8, får vi en likesidet trekant.
 +
 
 +
[[File: 1T_V21_del3_16b.png|600px]]
 +
 
 +
Vi har mange mulige trekanter, videre, f.eks:
 +
 
 +
[[File: 1T_V21_del3_16c.png|500px]]
  
[[File: 1T_V21_del2_14b.png|200px]]
+
[[File: 1T_V21_del3_16d.png|500px]]

Revisjonen fra 17. apr. 2022 kl. 10:37

Eksamen 1T vår 2021 LK20 Fagfornyelsen

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsning laget av Kristian Saug

Oppgavetype 1

I oppgavetype 1 skal du bare oppgi svaret, uten begrunnelse. Vi gir allikevel en liten begrunnelse her, for å forstå hvordan vi har kommet frem til svaret.

Oppgave 1

Svar: $a=-1$

Begrunnelse: Vi har $f(x) = ax+8$, og punktet $(4,4)$. Løser likningen $f(4)=4$.

$a\cdot 4 + 8 = 4 $

$ 4a = 4-8 $

$ a = \frac{-4}{4}$

$ a = -1 $

Oppgave 2

Svar: $BC = 6$

Begrunnelse: $sin\,A = \frac{\text{motstående katet}}{\text{hypotenus}}=\frac{BC}{AC}=\frac{3}{5}=\frac{6}{10} \quad \Rightarrow \quad BC = 6$

Oppgave 3

Svar: $k=-2$

Begrunnelse:

Ser at $x=2$ er løsningen for $x^3+x^2-2x-8=0$. Da må k være lik -2.

Oppgave 4

Svar: $k=-1$

Begrunnelse: Dersom likningen bare har ett svar, er diskriminanten i andregradsformelen lik 0.

$(2k)^2-4\cdot 1\cdot (-2k-1)=0$

$4k^2+8k+4=0$

$4(k^2+2k+1)=0$

$k=-1$

Oppgave 5

Svar: 280 km

Begrunnelse:

$A(x)=1200$

$B(x)=\frac{10}{4} x+500$

Setter A(x)=B(x):

$\frac{10}{4} x+500 = 1200$

$x=\frac{700\cdot 4}{10}$

$x=280$

Oppgave 6

Svar: Alternativ 2, $\frac{m}{n}<\frac{m+2}{n+2}$, er riktig.

Begrunnelse: Siden $m,n\in \mathbb{N}$, det vil si er naturlige tall, altså positive hele tall som 1,2,3... og $n>m$ har vi $0<\frac{m}{n}<1$ for alle verdier av $m$ og $n$. Dersom både $m$ og $n$ øker med 2, vil forholdet mellom disse tallene bli større (telleren vil utgjøre en større andel av nevneren). Du kan selv teste det med noen enkle tall.

Oppgave 7

Svar: $a=20$

Begrunnelse:

$f(x)=-5x^2+ax+1$

$f'(x)=-10x+a$

Toppunktet er i $x=2$, setter $f'(2)=0$

$-10\cdot 2+a=0$

$a=20$

Oppgave 8

Svar: $r=16, s=2, t=4$

Begrunnelse:

Dette følger av første kvadratsetning. vi har $4x^2+16x+16=(2x)^2+2\cdot 2x\cdot 4+4^2=(2x+4)^2$

Oppgavetype 2

I oppgavetype 2 skal du vise utregninger, forklare framgangsmåter du har brukt, og begrunne resultater.

Oppgave 9

a)

Skriver tabellen i regnearket på Geogebra, og utfører en regresjonsanalyse. Velger eksponentiell modell.

Modellen for temperaturen T i geleen, x minutter etter avkjøling er: $T(x)=92.5\cdot 0.99^x$

1T-V21-Del2-9.png

b)

1T-V21-Del2-9b.png

Temperaturen i geleen vil ikke bli lavere enn romtemperaturen, altså 20 grader Celsius. Bruker Geogebra til å finne ut hvor mange minutter det tar før geleen er 20 grader, ved å skrive y=20 og bruke "skjæring mellom to objekt" mellom denne linja og grafen til T. Det tar 155,7 minutter før temperaturen i geleen har nådd 20 grader.

Gyldighetsområdet til modellen er $x\in [0,155.7]$

Oppgave 10

Funksjonen $f(x)=x^2-x-6$ har to nullpunkter, x=-2 og x=3. Skissen viser grafen til denne funksjonen.

Skissen kan brukes til å se at ulikheten $x^2-x-6>0$ har løsningene x<-2 og x>3 (de områdene hvor grafen er over x-aksen).

Dette er samme løsninger som for ulikheten $x^2-x>6$.

Oppgave 11

Bruker regresjonsanalyse i Geogebra til å finne et uttrykk for antall fyrstikker f som funksjon av figurnummer x.

$f(x)=2x^2+2x$

1T-V21-del2-11.png

a)

Bruker Excel til å lage en oversikt over antall fyrstikker brukt per figur (bruker da funksjonen jeg fant i Geogebra), og en oversikt over antall fyrstikker brukt totalt. Jeg har bare 10000 fyrstikker totalt, og ser at jeg da kan lage 23 figurer.

1T-V21-del2-11b.png

1T-V21-del2-11c.png

b)

Jeg har 10000-9200 = 800 fyrstikker igjen etter å ha laget den siste figuren.

Oppgave 12

Bruker regresjonsanalyse i Geogebra.

a)

1T V21 Del2 12a.png

$y=-12x+280$ er en lineær modell som viser hvor mange kaniner det vil være i området om x måneder.

b)

1T V21 Del2 12b.png

$y = 280\cdot 0.907^x$ er en eksponentiell modell som viser hvor mange kaniner det vil være i området om x måneder.

Oppgave 13

Bruker CAS i Geogebra.

1T V21 del2 13.png

Linje 1: definerer f(x)

Linje 2: Finner x-verdien til punktene hvor den deriverte har verdi 1/2 (stigningstallet til tangenten er 1/2).

Linje 3 og 5: finner uttrykket for tangenten i de to punktene hvor stigningstallet til tangenten er 1/2.

Linje 4 og 6: finner skjæringspunktet til tangentene med x-aksen (y-verdien er lik 0).

Svar: $x=-\sqrt{2}+2$ og $x=\sqrt{2}+2$

Oppgave 14

a)

Bruker CAS i Geogebra til å sjekke sammenhengen mellom nullpunktene til f og g i det gitte eksempelet.

1T V21 del2 14a.png

Her ser det ut som nullpunktene til g har inverse verdier av nullpunktene til f. Men det kan også se ut som nullpunktene til f er 6 ganger større enn nullpunktene til g. Jeg tester med flere eksempler, for eksempel dette:

1T V21 del2 14a2.png

I oppgave b skal jeg finne ut om dette gjelder for alle slike polynomer.

b)

Bruker CAS i Geogebra til å sjekke sammenhengen mellom nullpunkter for alle slike polynomer med "omvendt rekkefølge" på koeffisientene a,b og c. Ser at for to slike polynomer h og i, så er forholdet mellom nullpunktene slik at nullpunktene til funksjonen h, er $\frac{c}{a}$ ganger nullpunktene til funksjonen i.

1T V21 del2 14b.png

Oppgavetype 3

I disse oppgavene får du presentert en situasjon eller en problemstilling som du selv må undersøke og utforske.

Oppgave 15

Jeg bruker glidere i Geogebra til å utforske hvilke verdier av a og b som gir et skjæringspunkt der begge koordinatene er positive hele tall. Sette gliderne til å være hele tall fra 1 til f.eks. 20.

1T-V21-del3-15.png

Jeg kan bruke grafene til å begynne å se sammenhenger, men jeg kan også finne skjæringspunktet mellom g og f ved regning, ved å sette f=g.

$ax=\frac{b}{x}$

$x^2=\frac{b}{a}$

$x=\sqrt{\frac{b}{a}}$

For at x skal være et helt positivt tall, må b/a gi et kvadrattall. Alle kombinasjoner av b/a som gir et kvadrattall, gir et skjæringspunkt der x er et positivt helt tall.

F.eks:

a=1, b=1,4,9,16,25...

a=2, b=2,8,18,36,50...

a=3, b=3,12,27,...

a=n, b=k*n, der n er et naturlig tall og k er et kvadrattall.

Både x- og y-koordinatene i skjæringspunktet skulle være positive, hele tall. Jeg må sjekke at alle kombinasjoner av b/a som gir kvadrattall, ikke bare gir en x-koordinat som er et positivt helt tall, men også en y-koordinat som er et positivt helt tall.

Finner y-koordinaten hvis $x=\sqrt{\frac{b}{a}}$

$f(\sqrt{\frac{b}{a}})=a\cdot \sqrt{\frac{b}{a}} = a\cdot \frac{\sqrt{a}\sqrt{b}}{\sqrt{a}\sqrt{a}} = a\cdot \frac{\sqrt{ab}}{a}=\sqrt{ab}$

Setter inn a=n, b=k*n, der n er et naturlig tall og k er et kvadrattall.

$y = \sqrt{ab} = \sqrt{n\cdot k\cdot n} = n\sqrt{k}$

Et naturlig tall ganger roten av et kvadrattall vil alltid gi et positivt, helt tall.

Dermed har vi vist at for alle a=n og b=k*n, der n er et naturlig tall og k er et kvadrattall, så vil skjæringspunktet mellom f og g ha koordinater som er positive, hele tall.

Oppgave 16

Cosinussetningen:

$a^2=b^2+c^2-2bc\cdot cos A$

Siri har likningen:

$a^2=8^2+x^2-8x$

hvilket må bety at

$2 cos A = 1$

$cos A = \frac{1}{2}$

$A=60^o$

Bruker en glider for a i Geogebra, og bruker CAS til å regne ut mulige verdier av x (linje 1 i CAS). Bruker grafikkfeltet til å tegne de ulike trekantene. Ser av linje 2 i CAS at a (n i linje 2) må være minst 7 for at vi skal få en trekant som tilfredsstiller likningen. For eksempel:

1T V21 del3 16.png

Er a = 8, får vi en likesidet trekant.

1T V21 del3 16b.png

Vi har mange mulige trekanter, videre, f.eks:

1T V21 del3 16c.png

1T V21 del3 16d.png