Forskjell mellom versjoner av «1T 2023 vår LK20 LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 34: Linje 34:
  
 
===c)===
 
===c)===
 +
 +
Funksjonen $f(x)=x\cdot \frac{80-x}{2}$ viser areal av rektangelet som funksjon av lengden x. Bruker Geogebra til å tegne grafen til f, og til å finne ekstremalpunktet A=(40,600).
  
 
[[File: 1T-v23-del2-2c2.png|600px]]
 
[[File: 1T-v23-del2-2c2.png|600px]]
 +
 +
Funksjonen viser at rektangelet har størst areal når lengden er 40, og da dobbelt så stor som bredden på 20.
  
 
==Oppgave 3==
 
==Oppgave 3==

Revisjonen fra 27. mai 2023 kl. 17:01

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

DEL 1

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

DEL 2

Oppgave 1

Oppgave 2

a)

Dersom lengden er 60 meter, blir bredden 10 meter. Arealet blir da $60\cdot 10 = 600$ kvadratmeter.

b)

Bruker Excel til å lage en oversikt. Bildet viser oversikten til venstre, og formlene som er brukt til høyre.

1T-v23-del2-2b.png

Det kan se ut som om Herman sin påstand er riktig. I oversikten er det største arealet når lengden er dobbel så stor som bredden.

c)

Funksjonen $f(x)=x\cdot \frac{80-x}{2}$ viser areal av rektangelet som funksjon av lengden x. Bruker Geogebra til å tegne grafen til f, og til å finne ekstremalpunktet A=(40,600).

1T-v23-del2-2c2.png

Funksjonen viser at rektangelet har størst areal når lengden er 40, og da dobbelt så stor som bredden på 20.

Oppgave 3

Løser oppgaven i CAS.

1T-v23-del2-3.png

Linje 1: Bruker arealsetningen til å bestemme arealet til trekant ABC.

Linje 2: Bruker cosinussetningen til å bestemme lengden AC.

Linje 3: Bruker cosinussetningen til å bestemme $\angle{ADC}$.

Linje 4: Siden CAS gir svaret i radianer, deler jeg på grader-tegnet for å få $\angle{ADC}$ i grader.

Linje 5: Bruker arealsetningen til å bestemme arealet til trekant ACD.

Linje 6: Legger sammen arealet til de to trekantene.

Arealet av figuren ABCD er ca. 50,8.

Oppgave 4

a)

Arealet av hvert rektangel er gitt ved:

$A=l\cdot b = 1\cdot f(x)$

Bruker CAS til å regne ut summen til arealet av de seks rektanglene.

1T-v23-del2-4b.png

Arealet er av de seks rektanglene er ca. 21,8.

b) og c)

1T-v23-del2-4cd.png

Arealet av 6000 rektangler er ca. 20.

Oppgave 5

Løser oppgaven i CAS. Finner arealet av hver trekant uttrykt ved r (linje 1-3), og løser til slutt likningen for summen av arealene til de tre trekantene (linje 4) for å finne verdien til r.

Linje 1: bruker formelen for areal av en trekant, A = 1/2 * grunnlinje * høyde

Linje 2: arealsetningen. $\angle{ASB}= 180^{\circ}-30^{\circ}-30^{\circ} = 120^{\circ}$

Linje 3: arealsetningen. $\angle{ASC}= 360^{\circ}-90^{\circ}-120^{\circ} = 150^{\circ}$

1T-v23-del2-5.png

Verdien av r er $2\sqrt{2}$.

Oppgave 6

a)

Bruker CAS til å bestemme topp- og bunnpunktene, og ser på grafen at dette er topp- og bunnpunkt (og f.eks. ikke terrassepunkt).

1T-v23-del2-6a.png

Grafen til f har et toppunkt i (0,2) og et bunnpunkt i (2,-2).

b)

Hvis man tegner en generell tredjegradsfunksjon uten førstegradsledd i Geogebra, $f(x)=ax^3+bx^2+d$, og bruker glidere for a, b, og d, vil man se at det alltid er et topp-, bunn-, eller terrassepunkt i x = 0. For eksempel har grafen til $x^3$ et terrassepunkt i x = 0.

Dersom man deriverer denne generelle tredjegradsfunksjon uten førstegradsledd, f, ser man at den deriverte alltid er lik 0 når x = 0. Det vil si at grafen til f har et topp- bunn- eller terrassepunkt i x = 0, for alle verdier av a, b og d. Et eventuelt annet ekstremalpunktet vil avhenge av verdien til a og b. Jeg bruker CAS for å vise dette:

1T-v23-del2-6b.png