1T 2023 vår LK20 LØSNING

Fra Matematikk.net
Hopp til:navigasjon, søk

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

DEL 1

Oppgave 1

$sin(u)=\frac{8}{10}$

$cos(u)=\frac{6}{10}$

$(sinu)^2+(cosu)^2=\frac{8^2}{10^2}+\frac{6^2}{10^2}=\frac{64+36}{100}=\frac{100}{100}=1$

Oppgave 2

Her kan du bruke abc-formelen for å finne nullpunktene, eller se direkte hvordan uttrykket kan faktoriseres (som gjort her).

$f(x)=x^2-2x-8=(x+2)(x-4)$

Grafen til f skjærer x-aksen i x=-2 og x=4.

Oppgave 3

Likningen viser et tredjegradspolynom på venstre side, som er faktorisert på høyre side.

Vi bruker polynomdivisjon og deler polynomet med den ene faktoren (x-1), slik at vi finner de to andre faktorene.

1T-v23-del1-3.png

Oppgave 4

En rasjonal funksjon med vertikal og horisontal asymptote uttrykkes ved $f(x)=\frac{ax+b}{cx+d}$

Den vertikale asymptoten er x = 1. Der er funksjonen f(x) ikke definert. Det vil si at nevneren i den rasjonale funksjonen er 0 når x = 1. Altså er nevneren x-1.

Den horisontale asympoten er y = 3. Det betyr at f(x) går mot 3 når x går mot $\pm\infty$. Det betyr at førstegradsleddet i telleren er 3x (siden vi allerede har funnet at førstegradsleddet i nevneret er x).

Skjæringspunktet med andreaksen er i y = 6. Det betyr at konstantleddet i telleren er -6 (siden vi allerede har funnet at konstantleddet i nevneren er -1).

Nullpunktet til f er 2, som vil si at f(2)=0. Dette stemmer med at telleren er 3x-6, fordi 3*2-6 = 6-6 = 0.

Vi har $f(x)=\frac{3x-6}{x-1}$

Oppgave 5

Denne grafen skal skisseres for hånd på eksamen.

1T-v23-del1-5.png

Grafen til f kan se ut som den blå grafen på bildet. Der hvor grafen til f' har nullpunkter, vil grafen til f ha ekstremalpunkter (i x=-3.12, x=0 og x=5.12).

Der hvor f' har negativ funksjonsverdi, vil grafen til f synke (når x mindre enn -3.12, og når x er mellom 1 og 5.12).

Der hvor f' har positiv funksjonsverdi, vil grafen til f stige (når x er mellom -3.12 og 1, og når x er større enn 5.12).

DEL 2

Oppgave 1

a)

Bruker Geogebra til å tegne grafen til T, og finner de to nullpunktene i definisjonsområdet: B=(5.8,0) og C=(8.9,0).

1T-v23-del2-1a2.png

Temperaturen er over 0 grader Celsius fra 5,8 til 8,9 måneder etter 1. januar.

Mai: måned nr. 5. I tillegg 0,8*31 = ca. 25 døgn inn i mai (6 døgn igjen av mai). August: måned nr. 8. I tillegg 0,9*31 = ca. 28 døgn inn i august.

Til sammen er temperaturen over 0 grader Celsius: 6 døgn i mai + 30 døgn i juni + 31 døgn i juli + 28 døgn i august = 95 døgn.

b)

Lager punktene E=(3,T(3)) og F=(7,T(7)). Lager en linje mellom dem med knappen "linje", og finner stigningstallet til linjen med knappen "stigning".

1T-v23-del2-1b.png

Stigningstallet er 5.04, som betyr at temperaturen stiger med omtrent 5 grader Celsius per måned fra 1. mars til 1. juli.

c)

Tegner grafen til T'(x) og finner nullpunktene G og H, og ekstremalpunktene I og J i definisjonsområdet.

1T-v23-del2-1c.png

Punkt G forteller at temperaturen er lavest en dag i slutten av februar (måned nr. 2).

Punkt H forteller at temperaturen er høyest en dag i starten av juli (måned nr. 7).

Punkt I forteller at temperaturen har raskest positiv endring en dag i slutten av april (måned nr. 4). Den dagen stiger temperaturen med en fart på ca. 6,9 grader per måned.

Punkt J forteller at temperaturen har raskest negativ endring en dag i slutten av september (måned nr. 9). Den dagen synker temperaturen med en fart på ca. 6,6 grader per måned.

Oppgave 2

a)

Dersom lengden er 60 meter, blir bredden 10 meter. Arealet blir da $60\cdot 10 = 600$ kvadratmeter.

b)

Bruker Excel til å lage en oversikt. Bildet viser oversikten til venstre, og formlene som er brukt til høyre.

1T-v23-del2-2b.png

Det kan se ut som om Herman sin påstand er riktig. I oversikten er det største arealet når lengden er dobbel så stor som bredden.

c)

Funksjonen $f(x)=x\cdot \frac{80-x}{2}$ viser areal av rektangelet som funksjon av lengden x. Bruker Geogebra til å tegne grafen til f, og til å finne ekstremalpunktet A=(40,800).

1T-v23-del2-2c2.png

Funksjonen viser at rektangelet har størst areal når lengden er 40, og da dobbelt så stor som bredden på 20.

Oppgave 3

Løser oppgaven i CAS.

1T-v23-del2-3.png

Linje 1: Bruker arealsetningen til å bestemme arealet til trekant ABC.

Linje 2: Bruker cosinussetningen til å bestemme lengden AC.

Linje 3: Bruker cosinussetningen til å bestemme $\angle{ADC}$.

Linje 4: Siden CAS gir svaret i radianer, deler jeg på grader-tegnet for å få $\angle{ADC}$ i grader.

Linje 5: Bruker arealsetningen til å bestemme arealet til trekant ACD.

Linje 6: Legger sammen arealet til de to trekantene.

Arealet av figuren ABCD er ca. 50,8.

Oppgave 4

a)

Arealet av hvert rektangel er gitt ved:

$A=l\cdot b = 1\cdot f(x)$

Bruker CAS til å regne ut summen til arealet av de seks rektanglene.

1T-v23-del2-4b.png

Arealet er av de seks rektanglene er ca. 21,8.

b) og c)

1T-v23-del2-4cd.png

Arealet av 6000 rektangler er ca. 20.

Oppgave 5

Løser oppgaven i CAS. Finner arealet av hver trekant uttrykt ved r (linje 1-3), og løser til slutt likningen for summen av arealene til de tre trekantene (linje 4) for å finne verdien til r.

Linje 1: bruker formelen for areal av en trekant, A = 1/2 * grunnlinje * høyde

Linje 2: arealsetningen. $\angle{ASB}= 180^{\circ}-30^{\circ}-30^{\circ} = 120^{\circ}$

Linje 3: arealsetningen. $\angle{ASC}= 360^{\circ}-90^{\circ}-120^{\circ} = 150^{\circ}$

1T-v23-del2-5.png

Verdien av r er $2\sqrt{2}$.

Oppgave 6

a)

Bruker CAS til å bestemme topp- og bunnpunktene, og ser på grafen at dette er topp- og bunnpunkt (og f.eks. ikke terrassepunkt).

1T-v23-del2-6a.png

Grafen til f har et toppunkt i (0,2) og et bunnpunkt i (2,-2).

b)

Hvis man tegner en generell tredjegradsfunksjon uten førstegradsledd i Geogebra, $f(x)=ax^3+bx^2+d$, og bruker glidere for a, b, og d, vil man se at det alltid er et topp-, bunn-, eller terrassepunkt i x = 0. For eksempel har grafen til $x^3$ et terrassepunkt i x = 0.

Dersom man deriverer denne generelle tredjegradsfunksjon uten førstegradsledd, f, ser man at den deriverte alltid er lik 0 når x = 0. Det vil si at grafen til f har et topp- bunn- eller terrassepunkt i x = 0, for alle verdier av a, b og d. Et eventuelt annet ekstremalpunktet vil avhenge av verdien til a og b. Jeg bruker CAS for å vise dette:

1T-v23-del2-6b.png