Forskjell mellom versjoner av «R1 2016 vår LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 115: Linje 115:
  
 
Det er to muligheter:  AB || CD eller BC || AD.
 
Det er to muligheter:  AB || CD eller BC || AD.
 +
 +
$[] = S[] \wee []= S[]$
  
 
==Oppgave 6==
 
==Oppgave 6==

Revisjonen fra 15. sep. 2016 kl. 15:26

oppgaven som pdf

Løsningsforslag (pdf) fra bruker joes. Send gjerne en melding hvis du har kommentarer til løsningsforslaget. På forhånd, takk.

Løsningsforslag (pdf) fra bruker LektorH.

Løsningsforslag (pdf) fra bruker Claves


Diskusjon av denne oppgaven


DEL EN

Oppgave 1

a)

$f(x)=-3x^2+6x-4$

$f'(x)=-6x+6= -6(x-1)$

b)

$g(x)=5\ln(x^3-x)$

$g'(x)=\frac{5(3x^2-1)}{x^3-x}=\frac{15x^2-5}{x^3-x}$

c)

$h(x)=\frac{x-1}{x+1}$

$h'(x)=\frac{x+1-(x-1)}{(x+1)^2}=\frac{2}{(x+1)^2}$

Oppgave 2

a)

$p(x)=x^3-7x^2+14x+k$

$p(x)$ er delelig med $(x-2)$ hvis og bare hvis $p(2)=0$

$p(2)=8-7\cdot4+14\cdot2+k=8-28+28+k=8+k$

$8+k=0$

$k=-8$

b)

$ \quad x^3-7x^2+14x-8 :(x-2)= x^2 - 5x + 4 \\ -(x^3-2x^2) \\ \quad \quad-5x^2 + 14x -8 \\ \quad \quad -(-5x^2 -10x) \\ \quad \quad \quad \quad \quad (4x -8)$

$x= \frac{5 \pm \sqrt{25 - 16}}{2} \\ x= 1 \vee x =4 \\ \\ P(x)= (x-1)(x-2)(x-4)$

c)

$P(x) \leq 0 $

R1-v2016-12c.png


$x \in < \leftarrow,1] \cup [2,4]$

Oppgave 3

a)

$f(x)=x^2e^{1-x^2}$

$f'(x)=2xe^{1-x^2}+x^2\cdot-2xe^{1-x^2}=2xe^{1-x^2}(1-x^2)$

b)

$f´(x)=0 \\ x= -1 \vee x=0 \vee x=1$

Den deriverte er positiv for x < -1, negativ for -1<x<0, positiv for 0<x<1 og negativ for x >1. Det git toppunkt for x= -1 og x = 1 og minimum for x = 0.

Topp: (-1, f( -1)) gir (-1,1) og (1,f(1)) gir (1,1)

Bunn: (0, f(0)) git (0,0)

c)

R1-v2016-13c.png

d)

R1-v2016-13d.png

Grafen til f har fire vendepunkter.

Oppgave 4

a)

$AB=AC=BC=6 \ cm$

$HB=\frac{1}{2}AB=3 \ cm$

$CH=\sqrt{(BC)^2-(HB)^2}=\sqrt{6^2-3^2} \ cm=\sqrt{27}=\sqrt{3^3} \ cm=3\sqrt{3} \ cm$

$CF=CE=\sqrt{(BC)^2+(BE)^2}=\sqrt{6^2+6^2} \ cm=\sqrt{2\cdot6^2} \ cm=6\sqrt{2} \ cm$

$HF=\sqrt{(CF)^2-(CH)^2}=\sqrt{72-27} \ cm=\sqrt{45} \ cm=\sqrt{9\cdot5} \ cm=3\sqrt{5} \ cm$

b)

$\frac{AF}{AB}=\frac{3+3\sqrt{5}}{6}=\frac{3(1+\sqrt{5})}{2\cdot3}=\frac{1+\sqrt{5}}{2}=\phi$

Oppgave 5

a)

$\vec{AB} =[5-1,2-1] = [4, 1] \\ \vec{AC} = [3-1, 5-1]=[2,4] \\ \vec{AB} \neq k \vec{AC}$

Punktene A, B og C ligger ikke på en rett linje.

b)

$\vec{CD} = [-3, t - 5] \\ \vec{DA} = [1, 1- t] \\ \vec{CD} \cdot \vec{DA} =0 \\ [-3, t-5] \cdot [ 1, 1-t] = 0 \\ -3 + (t-5)(1-t)= 0 \\ -t^2+6t - 8 = 0 \\ t= 2 \vee t =4$

c)

Det er to muligheter: AB || CD eller BC || AD.

$[] = S[] \wee []= S[]$

Oppgave 6

a)

Antall mulige fagkombinasjoner med 2 realfag og 2 andre fag:

${5\choose2}\cdot{8\choose2}=\frac{5\cdot4}{2!}\cdot\frac{8\cdot7}{2!}=10\cdot28=280$

b)

Antall mulige fagkombinasjoner med 4 fag hvor minst 2 er realfag:

${5\choose2}\cdot{8\choose2}+{5\choose3}\cdot{8\choose1}+{5\choose4}=280+\frac{5\cdot4\cdot3}{3!}\cdot8+5=280+80+5=365$

Oppgave 7

a)

R1-v2016-17a.png


Nullpunktene til f er (-2, 0) og (4, 0).

b)

$f(x)=x^2+px+q$

$A=(0,1)$

$B=(-p,q)$

$\vec{OS}=\vec{OA}+\frac{1}{2}\vec{AB}=[0,1]+\frac{1}{2}[-p,q-1]=[\frac{-p}{2},1+\frac{q-1}{2}]=[\frac{-p}{2},\frac{q+1}{2}]$

$S=(\frac{-p}{2},\frac{q+1}{2})$

$r=|\vec{AS}|=\sqrt{(\frac{-p}{2})^2+(\frac{q-1}{2})^2}=\sqrt{\frac{p^2+(q-1)^2}{4}}=\frac{\sqrt{p^2+(q-1)^2}}{2}$

c)

Likning for sirkel:

$(x-x_1)^2+(y-y_1)^2=r^2$

$(x+\frac{p}{2})^2+(y-\frac{q+1}{2})^2=\frac{p^2+(q-1)^2}{4}$

Skjæring med x-aksen:

$y=0$

$(x+\frac{p}{2})^2+(-\frac{q+1}{2})^2=\frac{p^2+(q-1)^2}{4}$

$(x+\frac{p}{2})^2=\frac{p^2+(q-1)^2}{4}-\frac{(q+1)^2}{4}$

$x+\frac{p}{2}=\frac{\pm \sqrt{p^2-4q}}{2}$

$x=\frac{-p \pm \sqrt{p^2-4q}}{2}$

Nullpunkter til $f(x)$:

$x^2+px+q=0$

$x=\frac{-p \pm \sqrt{p^2-4q}}{2}$

Sirkelen skjærer x-aksen i nullpunktene til $f(x)$.

DEL TO

Oppgave 1

a)

Det er to bunker:

$P(F) = P( \bar{F})= 0,5$

To røde kort fra bunke A:

$ P(R|F) = \frac 58 \cdot \frac 47 = \frac {5}{14}$

To røde kort fra bunke B:

$P(R| \bar{F})= \frac 37 \cdot \frac 26 = \frac 17$

b)

Den totale sannsynligheten for to røde kort:


$P(R) = P(F) \cdot P(R|F) + P(\bar{F}) \cdot P(R|\bar{F})=$

c)

Oppgave 2

a)

b)

Arealet av et rektangel er lengde multiplisert med bredde:

Dersom lengden er x, er bredden f(x), Altså $T(x) = x\cdot f(x) = x \cdot 5e^{-\frac{x}{2}} = 5xe^{- \frac{x}{2}}$

c)

$T´(x)= 5e^{- \frac x2} + 5x(- \frac 12) e^{- \frac x2} = (5-2,5x)e^{- \frac x2}$

Ser at eneste eksteremalpunkt er for x=2 : $T(2) = 10e^{-1} = \frac{10}{e} \approx 3,68$


Største areal er 3,68, når x=2.

Oppgave 3

a)

Parameterfremstilling for linjen l gjennom B og C. Trenger ett punkt og en rettningsvektor:

$\vec{BC} = [1,5]$ og B( 4, 0).

<math> \left[ \begin{align*}x = 4 + t\\ y = 5t \end{align*}\right] </math>

b)

$\vec {AP}= [4+t-1, 5t-3 ]= [3+t, -3+5t]$

AP vektor kan jo uttrykkes som x- koordiant til P minus x-koordiant til A, og tilsvarende for y-koordinater.

c)

d)

Oppgave 4

a)

b)