Forskjell mellom versjoner av «R1 2022 Vår LK20 LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 104: Linje 104:
  
 
==Oppgave 5==
 
==Oppgave 5==
 +
 +
===a)===
 +
 +
Eleven ønsker å finne toppunktet til funksjonen f, i intervallet $x\in[0,\rightarrow\rangle$
 +
 +
Linje 1-2: her defineres funksjonen f(x)
 +
 +
Linje 4: variabelen x gis verdien 0
 +
 +
Linje 5: variabelen h gis verdien 0,001
 +
 +
Linje 6: dette er en while-løkke som gjentar operasjonen i linje 7, så lenge funksjonsverdien f(x) er mindre enn eller lik funksjonsverdien f(x+h).
 +
 +
Linje 7 (inni while-løkka): verdien til x økes med h.
 +
 +
Linje 9: etter at while-løkken er ferdig, skrives verdien til x ut. Dette er en tilnærming til x-verdien hvor funksjonsverdien f(x) ikke lenger er mindre eller lik funksjonsverdien f(x+h). Vi har da funnet tilnærmet x-verdi for toppunktet til funksjonen.
 +
 +
===b)===
  
 
=DEL 2=
 
=DEL 2=

Revisjonen fra 29. des. 2022 kl. 13:35

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Videoløsning del 1 av Lektor Lainz

Løsning som pdf av Farhan Omar

DEL 1

Oppgave 1

a)

$f(x)=x^3+ln\,x$

$f'(x)=3x^2+\frac{1}{x}$

b)

$g(x)=x\cdot e^{2x}$

$g'(x)=1\cdot e^{2x}+x\cdot 2\cdot e^{2x}=e^{2x}(1+2x)$

Oppgave 2

$e^{2x}-e^x=2$

$(e^x)^2-e^x-2=0$

Setter $u=e^x$

$u^2-u-2=0$

$(u+1)(u-2)=0$

$u=-1 \vee u=2$

$e^x=-1 \vee e^x=2$

Forkaster det negative svaret fordi ln(-1) ikke er definert.

$ln(e^x)=ln(2)$

$x=ln(2)$

Oppgave 3

$\lim\limits_{x \to 3} \frac{x-3}{x^2+x-12}$

$=\lim\limits_{x \to 3} \frac{x-3}{(x-3)(x+4)}$

$=\lim\limits_{x \to 3} \frac{1}{x+4}$

$=\frac{1}{7}$

Oppgave 4

a)

$\overrightarrow{AC} = [t-1, 4-2] = [t-1, 2]$

$\overrightarrow{AB} = [-1-1, 5-2] = [-2, 3]$

Dersom vinkelen mellom to vektorer er 90 grader, er skalarproduktet av disse to vektorene lik 0.

$\overrightarrow{AC}\cdot\overrightarrow{AB} = 0$

$[t-1,2]\cdot[-2,3]=0$

$(t-1)\cdot(-2)+2\cdot 3=0$

$-2t+2+6=0$

$-2t=-8$

$t=4$

Anbefaler å tegne punktene i et koordinatsystem for å se at det stemmer.

b)

Dersom A, B og C skal ligge på en rett linje, er $\overrightarrow{AC}$ og $\overrightarrow{AB}$ parallelle. Da har vi at:

$\overrightarrow{AC} = k\cdot\overrightarrow{AB}$

$[t-1,2]=k\cdot[-2,3]$

Dette gir oss to likninger:

$I \quad t-1=-2k$

$II \quad 2=3k \quad \Rightarrow \quad k=\frac{2}{3}$

Setter inn k=2/3 inn i likning I:

$I \quad t-1=-2\cdot\frac{2}{3}$

$t=\frac{-4}{3}+1$

$t=-\frac{1}{3}$

Anbefaler å tegne punktene i et koordinatsystem for å se at det stemmer.

Oppgave 5

a)

Eleven ønsker å finne toppunktet til funksjonen f, i intervallet $x\in[0,\rightarrow\rangle$

Linje 1-2: her defineres funksjonen f(x)

Linje 4: variabelen x gis verdien 0

Linje 5: variabelen h gis verdien 0,001

Linje 6: dette er en while-løkke som gjentar operasjonen i linje 7, så lenge funksjonsverdien f(x) er mindre enn eller lik funksjonsverdien f(x+h).

Linje 7 (inni while-løkka): verdien til x økes med h.

Linje 9: etter at while-løkken er ferdig, skrives verdien til x ut. Dette er en tilnærming til x-verdien hvor funksjonsverdien f(x) ikke lenger er mindre eller lik funksjonsverdien f(x+h). Vi har da funnet tilnærmet x-verdi for toppunktet til funksjonen.

b)

DEL 2

Oppgave 4

Bruker CAS i Geogebra.

S1-V22-del2-6.png

Det tar ca. 7,8 timer før temperaturen i kaffen er mindre enn 40 grader Celsius.