Tallteori

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Tallteori

Innlegg Gustav » 15/09-2017 18:25

(a) Vis at produktet av to påfølgende positive heltall aldri er et kvadrattall.

(b) Vis at produktet av tre påfølgende positive heltall aldri er et kvadrattall.
Gustav offline
Tyrann
Tyrann
Innlegg: 4420
Registrert: 12/12-2008 12:44

Re: Tallteori

Innlegg Janhaa » 15/09-2017 20:10

plutarco skrev:(a) Vis at produktet av to påfølgende positive heltall aldri er et kvadrattall. .

vises med dobbel-ulikheten under:

[tex]n^2< n(n+1)< (n+1)^2[/tex]

da sees lett at ingen positive heltall er mellom n og n+1.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 8104
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Tallteori

Innlegg Gustav » 15/09-2017 22:48

Janhaa skrev:
plutarco skrev:(a) Vis at produktet av to påfølgende positive heltall aldri er et kvadrattall. .

vises med dobbel-ulikheten under:

[tex]n^2< n(n+1)< (n+1)^2[/tex]

da sees lett at ingen positive heltall er mellom n og n+1.


Ja, nettopp
Gustav offline
Tyrann
Tyrann
Innlegg: 4420
Registrert: 12/12-2008 12:44

Re: Tallteori

Innlegg Solar Plexsus » 27/09-2017 17:35

(b) Anta at det finnes tre påfølgende heltallene er $m-1$, $m$ og $m+1$ slik at produktet av disse er et kvadrattall; dvs. det finnes et positivt heltall $n$ slik at

$(1) \;\; (m - 1)m(m + 1) = n^2$.

Nå finnes det to positive heltall $a$ og $b$ slik at $a$ er kvadratfri og $m = ab^2$. Likning (1) gir $m \mid n^2$, i.e. $ab^2 \mid n^2$. Dette medfører at $ab \mid n$, som betyr at det finnes et positivt heltall $c$ slik at $n = abc$, som innsatt i likning (1) resulterer i at

$(2) \;\; a^2b^4 - 1 = ac^2$.

Følgelig må $a \mid 1$ iht. likning (3), som impliserer at $a=1$, som innsatt i likning (2) gir

$(3) \;\; (b^2 - c)(b^2 + c) = 1$.

Av likning (3) får vi at $b^2 - c = b^2 + c = 1$, i.e. $c=0$ og $n = abc = 0$. Av denne motsigelsen følger at likning (1) har ingen løsninger. q.e.d.
Solar Plexsus offline
Over-Guru
Over-Guru
Innlegg: 1674
Registrert: 03/10-2005 11:09

Re: Tallteori

Innlegg Gustav » 27/09-2017 19:16

Alternativt kan man skrive $(m-1)m(m+1)=m(m^2-1)=n^2$. Det er klart at $gcd(m,m^2-1)=1$, så både $m$ og $m^2-1$ må være kvadrattall. La $m^2-1=b^2$, som er ekvivalent med $m^2-b^2=(m-b)(m+b)=1$, så vi må ha at $m-b=m+b=\pm 1\Rightarrow b=0$ og $m=\pm 1$, men da vil det minste av de påfølgende heltallene være ikkepositivt, dermed har vi motsigelsen.
Gustav offline
Tyrann
Tyrann
Innlegg: 4420
Registrert: 12/12-2008 12:44

Re: Tallteori

Innlegg stensrud » 27/09-2017 21:16

Alternativt så følger det av det mer generelle resultatet som er bevist her.
stensrud offline
Descartes
Descartes
Innlegg: 438
Registrert: 08/11-2014 21:13
Bosted: Cambridge

Re: Tallteori

Innlegg Gustav » 30/09-2017 04:33

stensrud skrev:Alternativt så følger det av det mer generelle resultatet som er bevist her.


Bilde
Gustav offline
Tyrann
Tyrann
Innlegg: 4420
Registrert: 12/12-2008 12:44

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 13 gjester