Hvordan er "begrenset" definert når et intervall omtales?

Det er god trening å prate matematikk. Her er det fritt fram for alle. Obs: Ikke spør om hjelp til oppgaver i dette underforumet.

Hvordan er "begrenset" definert når et intervall omtales?

Innlegg Aleks855 » 17/09-2016 03:45

Jeg vet hva det vil si at et intervall er åpent, lukket eller halvåpent, men hva betyr det at det er begrenset?

Som kontekst, så er det snakk om ekstremalverdi setningen som sier at en kontinuerlig funksjon definert på et lukket, begrenset intervall, alltid er begrenset.

At funksjonen er begrenset tolker jeg som at $f(x)$ ikke går mot $\pm \infty$ på intervallet, men at selve intervallet må være lukket OG begrenset skjønner jeg ikke.

Dersom intervallet som $f(x)$ er definert på er lukket, så kan vel aldri $x\to \pm \infty$ uansett?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5895
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Hvordan er "begrenset" definert når et intervall omtales

Innlegg sbra » 17/09-2016 10:48

Hei!

Et lukket intervall defineres som et intervall som inneholder alle dets grensepunkter. Etter den definisjonen er for eksempel [tex]\left [ a, \infty \right )[/tex] et lukket intervall.

La da [tex]f(x) = x[/tex] være funksjonen. Den er kontinuerlig, men ikke begrenset i det lukkede intervallet.

Det altså ikke nok at intervallet er lukket. Det må også være begrenset.
sbra offline
Cantor
Cantor
Innlegg: 115
Registrert: 19/05-2014 12:25

Re: Hvordan er "begrenset" definert når et intervall omtales

Innlegg Gustav » 17/09-2016 12:26

Tror misforståelsen kommer av uklarhet i definisjoner, så her følger de som trengs:

1. Et intervall i $\mathbb{R}$ er en delmengde $U\subset \mathbb{R}$ slik at for hvert par av punkter $x,y\in U$ (der $x\leq y$), og for alle $x\leq z\leq y$, så er $z\in U$.

2. En delmengde $U \subseteq \mathbb{R}$ er åpen dersom det for alle punkter $x\in U$ fins et positivt, reelt tall $r$ slik at $\{y\in\mathbb{R}:|y-x|<r\}\subset U$.

3. En delmengde $V \subseteq \mathbb{R}$ er lukket dersom komplementet $\mathbb{R}\setminus V$ er åpent.

4. En delmengde $W$ kalles begrenset dersom det fins et positivt reelt tall M, slik at $|x|<M$ for alle $x\in W$. Hvis det ikke fins en slik $M$, er delmengden ubegrenset.

Da er det klart at $U:=[a,+\infty)=\{x\in \mathbb{R}: a\leq x\}$ er et ubegrenset, lukket intervall. Det fins åpenbart ingen slik $M$ fra def.4 (Bevis: Anta at det fins en M. Velg $y:=M+1\in U$, men da er $|y|>M$.), og komplementet av $U$ er åpent.(Bevis: La $x\in \mathbb{R}\setminus U$. Velg $r=|\frac{x-a}{2}|$)
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4296
Registrert: 12/12-2008 12:44

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 37 gjester