
A)
[tex]$$y^{\prime \prime }- 6y = 0$$[/tex]
Karakteristisk lign:
[tex]$$\lambda ^{\prime \prime } - 6 = 0 \Rightarrow \lambda = \pm \sqrt 6 $$[/tex]
[tex]$$\underline{\underline {y\left( x \right) = {C_1}{e^{6x}} + {C_2}{e^{ - 6x}}}} $$[/tex]
[tex]$$y\left( 0 \right) = {C_1}{e^{6 \cdot 0}} + {C_2}{e^{ - 6 \cdot 0}} = 3$$[/tex]
[tex]$$1.\;{C_1} + {C_2} = 3$$[/tex]
Ligning 1.
[tex]$$y^\prime \left( x \right) = 6{C_1}{e^{6x}} - 6{C_2}{e^{ - 6x}}$$[/tex]
[tex]$$y^\prime \left( 0 \right) = 6{C_1}{e^{6x}} - 6{C_2}{e^{ - 6x}} = 0$$[/tex]
[tex]$$2.\;{C_2} - {C_1} = 0$$[/tex]
Ligning 2.
[tex]$$1 + 2$$[/tex]
Vi løser bruker addisjonsmetoden og løser lign-settet.
[tex]$$2{C_2} = 4 \Rightarrow {C_2} = 2$$[/tex]
[tex]$${C_1} + 2 = 3 \Rightarrow {C_1} = 1$$[/tex]
Spesiell lign blir:
[tex]$$\underline{\underline {y\left( x \right) = 1 \cdot {e^{6x}} + 2 \cdot {e^{ - 6x}}}} $$[/tex]
Fasit:

Syntes fasiten så veldig merkelig ut...
