Kvadraroten av et negativt tall.

Her kan du stille spørsmål om oppgaver i matematikk på ungdomsskole og barneskole nivå. Alle som føler at de kan bidra er velkommen til å svare.

Kvadraroten av et negativt tall.

Innlegg JediMasterKen » 20/11-2012 18:08

Jeg lurte på om det stemmer at kvadratroten av et negativt tall er et negativt tall? :?: :?: :?:
May The Force Be With You!
JediMasterKen offline
Pytagoras
Pytagoras
Brukerens avatar
Innlegg: 9
Registrert: 18/11-2012 15:15
Bosted: Bergen

Innlegg Fibonacci92 » 20/11-2012 18:43

Det stemmer dessverre ikke!

Det går ikke an å ta kvadratroten av et negativt tall.

Dersom du er fornøyd med det svaret kan du slutte å lese nå. Dersom du ønsker å skjønne hvorfor dette stemmer kan du lese videre.

Kvadratroten av et tall k er det tallet a som er slik at hvis man ganger det med seg selv så blir det k.

[tex]\sqrt{k} = a \Rightarrow a \cdot a = k[/tex]

F.eks. [tex]\sqrt{4} = 2 \Rightarrow 2 \cdot 2 = 4[/tex]

Grunnen til at man ikke kan ta kvadratroten av et negativt tall er dette:

Tenk deg at a er kvadratroten av et negativt tall k.

Dersom a er positiv, er [tex]a \cdot a[/tex] positiv og dermed er ikke [tex]a \cdot a = k [/tex](fordi k er negativ)

Dersom a er negativ, er [tex]a \cdot a[/tex] også positiv! (Et negativt tall ganget med et negativt tall blir positivt, f.eks. er [tex](-5)\cdot(-5) = 25[/tex]). Dermed er ikke [tex]a \cdot a = k [/tex](fordi k er negativ, og [tex]a\cdot a[/tex] er positiv)

Når du kommer på et høyere nivå i matematikken får du derimot lære om litt andre tall.

Da lærer du bl.a. at [tex]\sqrt{-1} = i[/tex], der [tex] i[/tex] er et imaginært tall. Dersom du velger faget Matematikk X på videregående lærer du mer om dette!
Sist endret av Fibonacci92 den 20/11-2012 18:52, endret 1 gang
Fibonacci92 offline
Abel
Abel
Innlegg: 665
Registrert: 27/01-2007 22:55

Innlegg JediMasterKen » 20/11-2012 18:51

Det er derfor jeg en stor E foran kalkulator når jeg skulle prøve å finne ut kvadratroten av et negativt tall. Det var faktis godt å vite hvorfor, Fibonacci92! Tusen takk igjen! :P
May The Force Be With You!
JediMasterKen offline
Pytagoras
Pytagoras
Brukerens avatar
Innlegg: 9
Registrert: 18/11-2012 15:15
Bosted: Bergen

Re: Kvadraroten av et negativt tall.

Innlegg Mattikken » 03/02-2020 21:15

Kom over denne artikkelen, og du som svarte h*n har dessverre veldig feil! Det er veldig mulig! Hvis de komplekse tallene tolkes som punkter i det komplekse tallplanet, ligger de imaginære tallene langs y-aksen, mens de reelle tallene ligger langs x-aksen. (De reelle tallene er tall som π, √2, 6, -4.)

Sååå, Kvadratroten av feks -1, er i så jo det er fult mulig.

Nyttige linker:
https://matematikk.net/side/Komplekse_tall
https://www.matematikk.org/oss.html?tid=89121
Mattikken offline

Re: Kvadraroten av et negativt tall.

Innlegg Aleks855 » 03/02-2020 21:23

Han nevnte jo det i de to siste linjene i svaret.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6242
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 15 gjester