Tåkete formulering? Vektor-oppgave.

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
dan
Dirichlet
Dirichlet
Posts: 188
Joined: 25/09-2010 16:38

Hei! Jeg sitter med en oppgave her, og jeg må innrømme at jeg ikke helt vet hva oppgaven ber meg om å gjøre.

La v være en vektor i R^2. La g være (den envariable) funksjonen du får ved å restriktere f1 til linjen utspent av v og å bevege deg med konstant
fart 1 i retning v. Finn et uttrykk for g'(0).

Fra før er f_1 definert som f_1(x, y) = (3y^2 +2xy). Men dette er jo ikke en envariabel funksjon.

Skal jeg finne [tex]g(t) = (\frac{v_1}{\sqrt{v_1^2 + v_2^2}}\cdot t, \frac{v_2}{\sqrt{v_1^2 + v_2^2}}\cdot t) [/tex]? Jeg kan vanskelig se for meg at det er dette oppgaven ber om?

Takk! :)
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Jeg tolker også oppgaven slik du gjør.
Elektronikk @ NTNU | nesizer
dan
Dirichlet
Dirichlet
Posts: 188
Joined: 25/09-2010 16:38

Godt å høre :)

Men er det ikke i tilfellet snodig å innføre f_1?
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Oops, jeg så ikke godt nok etter på g-funksjonen din :P. Jeg tror de mener at du skal innføre x og y slik du har gjort, men du skal sette disse inn i [tex]f_1[/tex]. Altså at du får [tex]g(t) = f_1(\frac{v_1}{\sqrt{v_1^2 + v_2^2}} t, \frac{v_2}{\sqrt{v_1^2 + v_2^2}} t)[/tex].
Elektronikk @ NTNU | nesizer
dan
Dirichlet
Dirichlet
Posts: 188
Joined: 25/09-2010 16:38

Ah takk! :)

Jeg skulle altså få noe som :
[tex]g(t) = f_1(\frac{v_1}{\sqrt{v_1^2 + v_2^2}} t, \frac{v_2}{\sqrt{v_1^2 + v_2^2}} t) [/tex]

[tex]g(t) =3(\frac{v_2}{\sqrt{v_1^2 + v_2^2}}\cdot t)^2 +2(\frac{v_1}{\sqrt{v_1^2 + v_2^2}}\cdot t)\cdot(\frac{v_2}{\sqrt{v_1^2 + v_2^2}}\cdot t)[/tex]

[tex] g(t) = {\frac{t^2}{v_1^2 + v_2^2}}\cdot(3v_2^2 + 3v_1v_2)[/tex]?
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Ja, det ser riktig ut (hvis det er det de mener da :P).
Elektronikk @ NTNU | nesizer
dan
Dirichlet
Dirichlet
Posts: 188
Joined: 25/09-2010 16:38

Takk vektor! :)
fomlen
Pytagoras
Pytagoras
Posts: 14
Joined: 19/09-2012 20:20

Hei, sitter med samme oppgave. Lurte på hvordan dere kom fram til uttrykket for g(t). Er det en slags funksjon for enhetsvektoren av v? Og hva vil det si å restriktere en funksjon til en linje?
Post Reply