Gauss' theorem

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
mentalitet
Cayley
Cayley
Posts: 75
Joined: 04/09-2011 21:02

Trenger litt hjelp her:


Gjelder oppgave b. Jeg ville tro at man kunne bruke Gauss' theorem direkte,dvs. trippelintegrere divF over T men dette er tydeligvis feil.. jeg får 17*pi*sqrt(5), mens det endelige svaret skal være 8*pi*sqrt(5). Anyone?
Attachments
Oppg7-2011.png
Oppg7-2011.png (20.16 KiB) Viewed 3944 times
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Merk at du blir bedt om å kun finne fluksen ut av den krumme delen. Har du tegnet en figur? Flaten din består av en krum del og to sirkulære "endeflater" som er parallelle med xy-planet og befinner seg i hhv z=0 og z=5. Når du bruker divergensteoremet finner du den totale fluksen ut av hele den lukka flaten, altså summen av fluksen ut av den krumme delen, og fluksen ut av endeflatene.
Elektronikk @ NTNU | nesizer
mentalitet
Cayley
Cayley
Posts: 75
Joined: 04/09-2011 21:02

Ah, ok. Jeg må altså trekke fra de to endeflatene? Kan jeg bruke divergensteoremet her også eller er det enklere å parametrisere og løse to dobbeltintegral?
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Her må du nok integrere over de to flatene ja, og trekke fra det du fant med divergensteoremet. Du kan ikke bruke divergensteoremet - det krever jo et lukket volum, og du finner ikke noe lukket volum som kun avgrenses av de to endeflatene!
Elektronikk @ NTNU | nesizer
mentalitet
Cayley
Cayley
Posts: 75
Joined: 04/09-2011 21:02

Ok. Er dog fremdeles litt usikker på hvordan jeg skal sette opp de to integralene..Grensene er greie, men hvordan blir selve uttrykket? Dvs. hvordan blir F*n seende ut i de to tilfellene?
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

De to flatene er parallelle med xy-planet, ikke sant? Da har de en normalvektor som peker i z-retning. Videre skal normalvektorene peke ut av flatene. Her er det veldig lurt å tegne en figur, som sagt. Hvilken retning har normalvektoren til flaten der z=0? Hvilken retning der z=5? (Vi vet at de peker langs z-aksen, så det du må finne ut er om det er i positiv eller negativ z-retning).
Elektronikk @ NTNU | nesizer
mentalitet
Cayley
Cayley
Posts: 75
Joined: 04/09-2011 21:02

Plottet det nå. Gitt at jeg har plottet rett må vel normalvektoren i z = 0 være pekende nedover(negativ) mens i z = sqrt(5) peke oppover(positiv). Men jeg er fremdeles usikker på hvordan jeg skal løse de faktiske integralene.
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Stemmer det :)

Hvis vi kaller flatene for S1 (z = 0) og S2 (z=5) får vi henholdsvis S1F(0,0,1)dS=S1(0x)(1)dS=S2xdS og (uten mellomregningen) S25xdS. Siden de to flatene er parallelle med xy-planet trenger vi ikke å tenke på noen parameterisering her; dS blir simpelthen dA = dx dy. Med andre ord har du nå de to "vanlige" dobbeltintegralene D1xdxdy og intD25xdxdy, der D1 og D2 er de to områdene i xy-planet som x og y går over i de to flatene. For S1 er dette området simpelthen det samme; det er disken avgrenset av sirkelen 0=x2+y24  x2+y2=4. For S2 får vi at området D2 er disken avgrenset av sirkelen 5=x2+y24  x2+y2=9. Tar du resten nå? Siden områdene er sirkulære vil det være en god idé å bruke polarkoordinater.
Elektronikk @ NTNU | nesizer
mentalitet
Cayley
Cayley
Posts: 75
Joined: 04/09-2011 21:02

Fikk det _endelig_ til nå, tusen hjertelig takk!! :)
mentalitet
Cayley
Cayley
Posts: 75
Joined: 04/09-2011 21:02

Har et lite spm. til:

Hvordan kommer de fra tangentvektoren til enhetsvektoren?
Attachments
mattespm.png
mattespm.png (29.62 KiB) Viewed 3881 times
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

En enhetsvektor er simpelthen en vektor som har lengde 1. Du kan få en enhetsvektor i samme retning som en hvilken som helst (ikke 0-) vektor ved å dele vektoren på sin egen lengde. Lengden av vektoren her er |4j32k|=42+322=465.
Elektronikk @ NTNU | nesizer
mentalitet
Cayley
Cayley
Posts: 75
Joined: 04/09-2011 21:02

Skjønner ikke helt hvorfor dette blir feil - har gjort det på eksakt samme måte som i oppgaven tidligere postet. divF*volumet og så trekke fra fluksen ut gjennom toppen. sqrt(3)*r drdtetta, 0 < tetta < 2pi, 0 < r < 2

Er nederste oppg om det skulle være noen tvil!
Attachments
oppg510k.png
oppg510k.png (40.3 KiB) Viewed 3834 times
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Hva får du, og hva skal det bli? Etter kjapp regning får jeg 2π3.
Elektronikk @ NTNU | nesizer
mentalitet
Cayley
Cayley
Posts: 75
Joined: 04/09-2011 21:02

Jeg får samme som deg. LF operer med 3pisqrt(3)
Post Reply