Finn ei potensrekke til funksjonen

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
matteslave

Hei. lurte på om noen kunne vist meg hvordan eg finner potensrekken til denne.

f(x) = (e^x^2 - 1) / (x^2)
DennisChristensen
Grothendieck
Grothendieck
Posts: 826
Joined: 09/02-2015 23:28
Location: Oslo

matteslave wrote:Hei. lurte på om noen kunne vist meg hvordan eg finner potensrekken til denne.

f(x) = (e^x^2 - 1) / (x^2)
$\displaystyle f(x) = \frac{e^{x^2} - 1}{x^2} = \frac{1}{x^2}\left(e^{x^2} - 1 \right) = \frac{1}{x^2}\left(\sum_{k=0}^{\infty} \frac{x^{2k}}{k!} \space - 1\right) = \frac{1}{x^2}\left(1 + \sum_{k=1}^{\infty}\frac{x^{2k}}{k!} - 1\right) = \frac{1}{x^2}\sum_{k=1}^{\infty}\frac{x^{2k}}{k!} = \sum_{k=1}^{\infty}\frac{x^{2(k-1)}}{k!} = \sum_{k=0}^{\infty}\frac{x^{2k}}{(k+1)!}$
usten
Fibonacci
Fibonacci
Posts: 1
Joined: 10/10-2016 04:50

tusen takk!
Post Reply