Rasjonale funksjoner!

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
elli
Cauchy
Cauchy
Posts: 246
Joined: 24/10-2006 14:31

hvis vi har f(x)= (2x+1)/(x-) hva blir da den vertiakle og horisontale asymptote hvis vi skal finne det ved regning?


Og er det foresten en regel som sier at jo høyere verdi x har, jo nærmere kommer grafen bruddpunktet :? ??
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

elli wrote:hvis vi har f(x)= (2x+1)/(x-) hva blir da den vertiakle og horisontale asymptote hvis vi skal finne det ved regning?


Og er det foresten en regel som sier at jo høyere verdi x har, jo nærmere kommer grafen bruddpunktet :? ??

Nevner... (x - ?)... :shock: :?:
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
elli
Cauchy
Cauchy
Posts: 246
Joined: 24/10-2006 14:31

ops... glemte å skrive det: nevner (x-1)
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

elli wrote:hvis vi har f(x)= (2x+1)/(x-) hva blir da den vertiakle og horisontale asymptote hvis vi skal finne det ved regning?


Og er det foresten en regel som sier at jo høyere verdi x har, jo nærmere kommer grafen bruddpunktet :? ??


Les dette:

http://www.matematikk.net/ressurser/per ... php?aid=36


Vertikal asymtote for x = 1. Dvs man setter nevner lik null:
x - 1 = 0, dvs x = 1


Horisontal asymtote når alle ledd i f(x) deles på x, og en lar x---> [symbol:uendelig] . Da vil y = 2 være horisontal asymtote.

DEn rasjonal funksjon f(x) kan uttrykkes på formen f(x) = p(x)/q(x) der p og q er polynomer. Bruddpunktene til f er nullpunktene til q, dvs. løsningene av likningen q(x)=0,
dvs her når x - 1 = 0, for x = 1
Last edited by Janhaa on 24/10-2006 15:15, edited 1 time in total.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
ettam
Guru
Guru
Posts: 2480
Joined: 28/09-2005 17:30
Location: Trondheim

[tex]f(x)= \frac{2x+1}{x-1}[/tex]

Vil ha vertikal asymptote for x = 1 og horisontal asymptote for y = 2

Fordi:



Glem det, ser at Janhaa rakk å poste et svar mens jeg drev å skrev på mitt... :)
mathvrak
Maskinmester
Maskinmester
Posts: 420
Joined: 18/04-2005 00:00

[tex]f(x)= \frac{2x+1}{x-1}[/tex]

horisontal asymptote, du må spørre det selv. Hva går f(x) til når x går til uendelig.

[tex]\text{grense} = \lim_{x\to\infty}\left(\frac{2x+1}{x-1}\right) = \lim_{x\to\infty}\left(\frac{(2x +1)/x}{(x-1)/x}\right) = \lim_{x\to\infty}\left(\frac{2 +\frac{1}{x}}{1-\frac{1}{x}}\right) = \frac{2 +\frac{1}{\infty}}{1-\frac{1}{\infty}} = \frac{2}{1} = 2[/tex]
Post Reply