Hei har en oppgave her, som jeg ikke forstår formuleringen på. Hva er det jeg egentlig skal gjøre her?
g)
I likningen
[tex]x^{3}-\frac{3}{2}x^{2}-6x+\frac{13}{2}=b[/tex]
er b et reelt tall.
Avgjør hvor mange løsninger denne likningen har for ulike verdier av b.
Takk.
Funksjonsoppgave
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
Ved bare å ha sett raskt på oppgava, ville jeg løst den grafisk. Kall uttrykket på venstre side for f, og Tegn 3. gradsfunksjonen på kalkis.luringen wrote:Hei har en oppgave her, som jeg ikke forstår formuleringen på. Hva er det jeg egentlig skal gjøre her?
g)
I likningen
[tex]x^{3}-\frac{3}{2}x^{2}-6x+\frac{13}{2}=b[/tex]
er b et reelt tall.
Avgjør hvor mange løsninger denne likningen har for ulike verdier av b. Takk.
Finn max og min til f ): f[sub]max[/sub] = 10 og f[sub]min[/sub] = -3.5
Observer nå funksjonen på displayet, og studer for hvilke verdier av b, f har 1 løsning, 2 løsninger og 3 løsninger.
Dvs for b < -3.5 gir 1 løsning og b > 10 gir 1 løsning
Og b = -3.5 gir 2 løsninger og b = 10 gir 2 løsninger.
Og til slutt for b: -3.5 < b < 10 medfører 3 løsninger
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]