Korteste avstand fra linje til punkt.

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
eigard
Pytagoras
Pytagoras
Posts: 7
Joined: 30/10-2006 20:23

Hvordan kan jeg finne korteste avstanden fra ett punkt p(x,y,z)
til en parametrisert linje?
Vil gjerne ha en generell forklaring, men her er ett eksempel:
p(-4, 8 ,3) L=[x= -11+t, y= 7-t, z= t].
Terminator
Cayley
Cayley
Posts: 94
Joined: 13/10-2006 22:30

Linjen l er gitt med parameterfremstillingen
x = -11 + t
y = 7-t
z = t


P(-4,8,3)

Et punkt p på linjen oppfyller ligningen
x = -11 + t
y = 7-t
z = t

P(-4,8,3)


pP vektor = [(-4-(-11+t), 8-(7-t), 3-t] = [-15-t,1+t,3-t]

Lengden er da gitt som [symbol:rot] (((-15-t)^2)+((1+t)^2)+((3-t)^2))

Men du ønsker å finne den minste lengden av pP vektor. Ser vi på lengdefunksjonen l(X) =[symbol:rot] (((-15-t)^2)+((1+t)^2)+((3-t)^2))

Ønsker du altså å finne ut når l'(X) = 0. For den t verdien l'(x) = 0, er vektoren minst, ergo avstanden kortest
daofeishi
Tyrann
Tyrann
Posts: 1486
Joined: 13/06-2006 02:00
Location: Cambridge, Massachusetts, USA

Vi trenger ikke benytte oss av dervasjonsregning. Jeg tror dette er vel så greit.

Vi har punktet og linjen

P(4, 8, 3)r=(1170)+t(111)

Dermed kan vi konstruere en vektor d fra punktet P til linjen r som en funksjon av parameteren t:

d=(11+t7tt)(483)=(7+t1t3+t)

Nå kan vi benytte oss av at det korteste linjestykket fra P til r står normalt på r. Dermed vet vi at skalarproduktet av d og retningsvektoren til r er 0:

(7+t1t3+t)(111)=3t9=0t=3

Dermed blir korteste vektor mellom P og r
(7+3133+3)=(440)

Og korteste avstand:
|(440)|=42+42=42
Terminator
Cayley
Cayley
Posts: 94
Joined: 13/10-2006 22:30

En fortegnsfeil i svaret mitt!

I(x) = [symbol:rot] ((7-t)^2 + (1+t)^2 + (3-t)^2)
Post Reply