(lnx)^2+lnx^2=0
naturlige logaritme
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
-
John Cena54
- Cantor

- Posts: 123
- Joined: 03/11-2006 19:44
kan noen hjelpe meg med denne oppgaven, takk
(lnx)^2+lnx^2=0
(lnx)^2+lnx^2=0
[tex]\ln(x^2) = 2\ln(x) \\ \therefore \ \ln^2(x) + \ln(x^2) = \ln^2(x) + 2\ln(x) = \ln(x)(\ln(x) + 2) = 0 \\ \therefore \ \ln(x) = 0 \ \ \vee \ \ \ln(x) = -2 \\ \therefore \ x = 1 \ \ \vee \ \ x = e^{-2}[/tex]
-
mrcreosote
- Guru

- Posts: 1995
- Joined: 10/10-2006 20:58
Litt raskere: [ tex]a\\b\\c[ /tex] produserer
[tex]a\\b\\c[/tex]
[tex]a\\b\\c[/tex]

