Introduksjon til differensiallikninger: Forskjell mellom sideversjoner
Linje 240: | Linje 240: | ||
<math>\frac{dy}{dx} = 3x + 2 \hspace{50 mm} y (1)= 3 \ | <math>\frac{dy}{dx} = 3x + 2 \hspace{50 mm} y (1)= 3 \ | ||
dy = (3x + 2)dx \ | dy = (3x + 2)\,dx \ | ||
y(x) = \int | y(x) = \int 3x + 2 \,dx \ | ||
y(x) = \frac 32x^2 + 2x + C </math> | y(x) = \frac 32x^2 + 2x + C </math> | ||
Dette er den generelle løsningen.<p></p> | Dette er den generelle løsningen.<p></p> | ||
For å finne den spesielle løsningen benytter vi opplysningen | For å finne den spesielle løsningen benytter vi opplysningen | ||
y(1) = 3.<p></p> | $y(1) = 3$.<p></p> | ||
<math>y(1) = \frac 32 \cdot 1^2 + 2 \cdot 1 + C = 3 \ | <math>y(1) = \frac 32 \cdot 1^2 + 2 \cdot 1 + C = 3 \ | ||
C = - \frac 12 </math> | C = - \frac 12 </math> |
Sideversjonen fra 1. mai 2013 kl. 01:28
En differensialligning vil typisk beskrive en forandring av en variabel i tid og/eller rom. Den skiller seg fra "vanlige" ligninger ved at løsningene er funksjoner, ikke bestemte verdier. Teorien for differensialligninger er fundamental for forståelsen av dynamikken i naturen og danner grunnlaget for blant annet klassisk mekanikk og kvantemekanikk. Vi deler diff.ligningene inn i partielle og ordinære ligninger, der matematikken i videregående skole kun fokuserer på ordinære ligninger, ofte kalt ODE (Ordinary Differential Equations). Dvs. at løsningsfunksjonen kun har én variabel, som oftest kalt
- På ungdomstrinnet og videregående grunnkurs arbeidet man med ligninger der den ukjente var et tall, ofte kalt
. - I differensialligninger er den ukjente en funksjon
. En differensialligning gir sammenhengen mellom en ukjent funksjon og noen av dens deriverte. - I denne artikkelen skriver vi
og om hverandre. Den siste skrivemåten kalles Leibniz' notasjon etter den tyske filosofen og matematikeren Gottfried Wilhelm Leibniz. - Man bør være fortrolig med ligninger, funksjonslære, integrasjon og derivasjon før man gir seg i kast med differensialligninger.
- Ligningene er viktige i fysikk og andre fag, der de kan brukes til å modellere forskjellige fysiske situasjoner.
Ordenen til en diff.ligning
Formelt vil en ordinær diff.ligning være på formen
Eksempel på diff.ligning av første orden
En enkel ordinær differensialligning av første orden er
. Løsningen finnes direkte ved integrasjon; vi får at for en konstant .
Eksempel på diff.ligning av 2.orden
En enkel andreordens ordinær differensialligning er
. Dette er Newtons andre lov med konstant kraft (10 N) der er posisionen ved tida . De to prikkene over betyr at vi dobbeltderiverer med hensyn på tiden.
Førsteordens lineære ligninger
Lineære differensialligninger av første orden kan skrives på formen
Her er
Homogene og inhomogene førsteordens diff.ligninger
Dersom
Slike ligninger kan løses på to måter:
- Multiplikasjon med integrerende faktor
- Som en separabel ligning
Integrerende faktor
Eksempel: Homogen ligning, integrerende faktor
Vi skal løse
. Integrerende faktor er .
For å finne ut hva
er trenger man i tillegg en initialbetingelse (startbetingelse) på løsningen. Det behandles i avsnittet om Initialverdiproblemer.
Eksempel: Inhomogen ligning, integrerende faktor
Vi skal løse
. Integrerende faktor er .
For å finne ut hva
er trenger man i tillegg en initialbetingelse (startbetingelse) på løsningen.
Separable differensiallikninger
Separable ligninger er på formen
, der
, der
Eksempel: Separabel ligning
Vi skal løse ligningen
som en separabel ligning. Da er det lurt å bruke Leibniz' notasjon. Vi omskriver til: Her har vi omdøpt konstanten foran eksponentialfunksjonen, slik at
. Ved å sette løsningen inn i den opprinnelige diff.ligningen, ser vi at løsningen stemmer.
Homogene lineære andreordens diff.ligninger med konstante koeffisienter
En generell andreordens diff.ligning er på formen
- Ligningen er homogen dersom
. Det gir oss - Konstante koeffisienter betyr at
, og er konstanter uavhengig av . Vi skriver ligningen på formen - Andreordens betyr at den dobbelderiverte opptrer i ligningen. I en tredjeordens ligning vil den tredjederiverte opptre.
- Lineær betyr at produkter eller potenser av
og dens deriverte ikke forekommer i ligningen. er således et eksempel på en ikkelineær ligning. - Karakteristisk ligning til
er
Den karakteristiske ligningen kan ha tre ulike typer løsninger:
- To ulike reelle røtter
- Én reell rot
- To komplekse røtter
Dersom ligningen har to reelle røtter gir det generell løsning
Eksempel: To reelle røtter
Dersom ligningen har én reell rot blir løsningen på formen
Eksempel: Én reell rot
Dersom ligningen har to komplekse røtter,
og , blir løsningen
Eksempel: To komplekse røtter
Initialverdiproblemer
I eksemplene over (og senere) ser man at den generelle løsningen inneholder en eller to
konstanter
Når en differensialligning er gitt med initialbetingelser kalles det for et initialverdiproblem.
Initialbetingelsen(e) kan være knyttet til situasjonen ved tiden
Eksempel: Initialverdiproblem
Finn den spesielle løsningen til initialverdiproblemet:
Dette er den generelle løsningen.
For å finne den spesielle løsningen benytter vi opplysningen
.
Den spesielle løsningen blir:
Retningsdiagram
Førsteorden ligninger kan skrives som y'(x) = F(x,y) der x er den variable og y er den ukjente
funksjonen. Dette gir stigningstallet til tangen i punktet (x,y). Dette gir et bilde av hvordan grafene til løsningsfunksjonene ser ut og kalles et retningsdiagram for differensialligningen.
På engelske er betegnelsen "slope field".
Eks 9:
Gitt er ligningen y' = 2
Man observerer at stigningstallet til y(x) er 2 for alle x. Løsningen på ligningen er en eller
annen rett linje med stigningstall 2. Et retningsdiagram illustrerer dette:
Dersom man løser ligningen y' = 2
Får man y = 2x + C, når man integrerer på begge sider.
Man ser nå at retningsdiagrammet stemmer, C skyver grafen opp eller ned i koordinatsystemet. Verken x eller y har noen betydning for grafens form. Diagrammet indikerer en løsning for y = 2x + 1
Eks 10
Gitt er ligningen y' = x + 1
Man observerer at stigningstallet til y(x) varierer med varierende x verdi, og er null for x = -1. Det gir følgende retningsdiagram:
Dersom man løser ligningen y' = x + 1
Får man
når man integrerer på begge sider.
Retningsdiagrammet indikerer at løsningen er en parabel med minimum i x = -1